Executive Summary

Introduction
The Global Water Initiative (GWI) is a worldwide program that is financed by the Howard G. Buffet Foundation. The long term goal of GWI is to generate lessons from Integrated Water Resources Management processes that inform policy change in the water sector, establishing platforms and frameworks that promote advocacy towards good governance of water resources.

This program is implemented in Ghana by a consortium of NGOs namely CARE International and Catholic Relief Services (CRS) together with the Regional Office for Central and West Africa of the International Union for Conservation of Nature (IUCN-PACO), based in Ouagadougou, Burkina Faso.

Recognizing that a river basin is the unit for planning in the Ghana Water Policy (2007), steps have been taken by IUCN-PACO to provide information that will lead to understanding the hydrology and water resource characteristics of the Black Volta basin. In view of this, Allwaters Consult Limited was contracted by IUCN to undertake this study in Ghana to guide future implementation of Integrated Watershed Management in the Black Volta basin.

The overall objective of this study was to prepare a document that will guide the future interventions of GWI in Ghana, characterise water resources (both current and future) of the Black Volta basin highlighting sustainable operational mechanisms including constraints that govern water resources. Specifically, the assignment sought to:

i. Assess the hydrological situation of the Black Volta basin, delineate its’ extent and limits, determine the interaction with other hydrologic systems, and the transboundary zone with Burkina Faso

ii. To understand the stakes of water resources, the potential of surface water and groundwater systems, uses, and stakeholders (whose activities impact directly or indirectly), management constraints as regards exploitation and suitability

iii. To assess the state of dug-outs, dams, wells, and characterize the agricultural or irrigation water use (current and future) on one hand, and the cultivated areas around these water bodies: surface, types of crop, seasonal (or not) use of water, on the other hand

iv. To examine the ecosystem approach into river basin planning and management of the Black Volta.

The work was carried out in three blocks. Block 1 involved desktop studies of the Black Volta and the Volta basin in general; Block 2 covered Field work where the consortium visited GWI communities, other communities of interest and Key stakeholders in the basin. The last block - Block 3 was mainly about report writing and validating the study.
Study Area
The Black Volta basin lays between Latitude 7°00'00"N and 14°30'00"N and Longitude 5°30’00”W and 1°30'00”W, and covers an estimated area of about 130,400 km². In Ghana, the basin covers an area of about 18,384km² constituting 14% of the basin. The Black Volta river basin is a trans-national river system that stretches from North to South through Mali, Burkina Faso, Ghana and Cote d’Ivoire, and from Burkina Faso, Cote d’Ivoire and Ghana from West to East.

The study was carried out in the portion of the basin within Ghana with a water audit section in the Upper West Region of Ghana within the basin. The study area covers 8 districts out of 19 districts which falls within the Black Volta basin in Ghana.

As of the year 2000 the Black Volta was home to about 4.5 million people in Burkina Faso, Ghana, Cote d’Ivoire and Mali. This population is estimated to grow to about 8 million by the year 2025. Population density in the basin ranges from 8 to 133people/km². Bouna department in Cote d’Ivoire and Sissala district in Ghana both have the lowest of 8 and Lawra district in Ghana has the highest of 133. The average population density is 43people/km².

In the Black Volta basin, most lands are used for agriculture with bush fallow food crop cultivation. The food crops cultivated are mostly under rain-fed cultivation of cereals including rice, millet, sorghum, and maize; yam, cassava, groundnuts and beans. In the dry season some farmers grow vegetables including tomatoes, pepper, okro, lettuce, cabbage and pumpkin especially in the Lawra district. Most farmers practice compound farming since lands closer to their houses are somewhat fertile. However, in the Lawra district the lands are highly degraded both in terms of physical status and soil fertility levels and can hardly support crop cultivation which contribute to low crop yield. This is exacerbated by the rather high population density. Animal grazing in the basin is mostly done on free range except in the dry season, where livestock owners/herdsmen migrate with their animals in search of water and feed in nearby communities.

The landcover maps prepared for the Black Volta basin show that in Burkina Faso most of the land has been developed for Agriculture (Rainfed and Irrigated) whereas in Ghana most of the land is under forest/grassland cover. There is therefore the potential to increase Agriculture land, but this has to be done in a sustainable manner.

The dominant soils in the Black Volta basin according to the FAO soil classification are Luvisols and Gleysols with altitudes ranging between 60m and 762m above m.s.l. In the Ghana portion of the basin, Ferric Luvisols is the most dominant soil type.

Temperature in Ghana normally never falls below 24°C since the country is on the equator¹. Annual mean temperature in the Volta basin is between 27-30°C and in the Black Volta, 26°C. Daily temperature rises as high as 44°C during the day and could fall to 15°C at night. The

¹ BARRY ET AL., 2005. COMPREHENSIVE ASSESSMENT OF WATER MANAGEMENT IN AGRICULTURE. COMPARATIVE STUDY OF RIVER BASIN DEVELOPMENT AND MANAGEMENT.
hottest Months are March-April and the coolest, August\(^1\). Relative humidity is between 20-30% in the harmatan season and 70-80% in the rainy season.

Water Availability
The Black Volta basin is drained by the Bougouriba, Gbongbo, Grand Bale, Voun Hou, Sourou, Wenare, Bambassou, Bondami, Mouhoun (main Black Volta), Tain and Poni rivers as main tributaries.

The mean runoff in the Black Volta is estimated at 7km\(^3\) per annum\(^2\). The driest and wettest months are March and September, respectively. Monthly flows in Lawra (upstream), Bui (Midstream) and Bamboi (downstream) were used to assess the runoff from the basin within Ghana.

\(^2\) ANDREINI ET. AL. (2000), VOLTA BASIN WATER BALANCE
The late 1980s and early 1990s marked the evolution of reservoirs in the basin; and reservoirs are still being constructed. This period (1990-2009) is referred to in this study as a post-impact period since the dams cause hydrological alterations in the basin. Periods (1952-1989) before the construction of the dams is called a pre-impact period. From the figures above it is evident that a large quantity of water flows to the Volta lake untapped. Although this flows are useful for hydropower production downstream there is much more to be tapped upstream while meeting hydropower (downstream) needs as well.

On the average, the mean annual groundwater recharge of the Volta River system is about 5-12% of annual precipitation in weathered rocks. Only rainfall values exceeding 380mm/annum in these weathered rocks recharge the groundwater system. Monitoring of groundwater quality is somewhat better than surface water quality due to the fact that the Black Volta is predominantly rural (about 70%) and their domestic demands are satisfied with groundwater. Apart from hardness, groundwater quality seems to be ok as shown in Table 6. The potential problems with groundwater are largely fluoride excesses and iodine deficiencies (i.e. less than 0.005 mg/l)³.

Delineation of Subbasins

In Ghana, the Water Resources Commission (WRC) considers the whole portion of the Black Volta basin in Ghana as its unit of planning for IWRM. However this study delineated the basin into 5 main sub-basins in Ghana; Dapola, Noumbiel, Vonkoro, Bui and Bamboi. The study also considered the portion of the Black Volta Basin within the Upper West Region as its’ water audit section (shown in the figure below). The WEAP model developed looked in detail at water allocation in the water audit section.

The stations of interest to Ghana within the Black Volta basin includes the one listed in the table below.

<table>
<thead>
<tr>
<th>STATION</th>
<th>Latitude</th>
<th>Longitude</th>
<th>COUNTRY</th>
<th>RIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapola</td>
<td>10.570</td>
<td>-2.920</td>
<td>BF</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Lawra</td>
<td>10.630</td>
<td>-2.920</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Noumbiel</td>
<td>9.680</td>
<td>-2.770</td>
<td>BF</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Vonkoro</td>
<td>9.190</td>
<td>-2.710</td>
<td>CI</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Bui</td>
<td>8.281</td>
<td>-2.238</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Bamboi</td>
<td>8.150</td>
<td>-2.030</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
</tbody>
</table>

The Upper West Region within the Black Volta Basin
Water Demand in the Basin

Water use in the basin is mostly for agriculture, domestic purposes, fishing, livestock, the environment and currently mining (legal and galamsay). Portable water supply to the populace in the basin within Ghana is done largely by the GWCL for urban coverage; and the Community Water and Sanitation Agency (CWSA) for rural water supply.

The GWCL operates mainly by using surface water resources and sometimes wells and boreholes. It has 208 pipe borne water systems, 8000 boreholes with hand pumps, 10,000 hand-dug wells to supply water to urban towns including Wa Municipality.

CSWA uses mostly the small town water supply system with mechanized boreholes often as the source of supply.

Rural domestic water demand is estimated as 50l/c/day while that of urban population in the basin is estimated at 120 l/c/day.

Most farmers in the Black Volta basin in Ghana are peasant farmers who practise compound farming. Irrigation is largely done using small reservoirs hence its water demand is met by small reservoirs. The only notable large irrigation scheme in the basin within Ghana is the Bui irrigation which has an estimated water use rate of 20,000m³/ha/year and a projected irrigable land of about 800ha by 2030 under cultivation.

Livestock in the basin water from the main Black Volta river and its tributaries, and small reservoirs and dugouts. This usually serves as water source for large ruminants including cattle. However, small ruminants like goat and sheep often source their water needs from dugouts, wells and boreholes for which reason a trough is built at the water facility. Data collected by MOFA for 2010 shows that goat is the predominant livestock kept in the Upper West region. The region has over 600,000 herds of livestock with an annual water use rate of about 1.7million m³.

A number of small reservoirs are dotted in the Volta basin especially in the White Volta basin. This is very much utilized in the White Volta unlike in the Black Volta. The total annual water demand is estimated at 102Mm³ for the entire Volta basin. In the Upper West Region of Ghana in the Black Volta basin alone, the annual water demand for small reservoirs was found to be 4.2Mm³ representing about 4% with respect to small reservoir demand for the entire Volta basin.

4 ADOM (1997). GHANA WATER RESOURCES MANAGEMENT STUDY. INFORMATION BUILDING BLOCK. MAIN REPORT – URBAN WATER SUPPLY
Environmental flow is considered to be the minimum flow required to sustain habitat in rivers. It is considered in this study as the 25 percentile flow since detail study carried out on environmental flow requirement for the basin is not available. In previous studies it was assumed to be 0.05 m3/s5.

5 Volta Water Audit Update Study, 2012
Challenges regarding use of water in the Black Volta basin of Ghana

Most communities in the Black Volta are supplied with boreholes for their domestic water needs. Unfortunately minor routine maintenance and operation such as chlorination is not carried out. Whereas management mechanisms are operational through monthly levy and contributions from members who patronize the facility for the purpose of maintenance, other communities have adopted the pay as you fetch approach. The former was found to be faced with the challenge of effective collection and thus less sustainable.

Some communities have been provided with Small Reservoirs or Dugouts. However, no intensive large scale irrigation is carried out downstream of these facilities with the exception of the one in Bui. Most of these dugouts also dry up in the dry season when it is needed most for dry season vegetable gardening and livestock watering. This is primarily due to the fact that they are silted or have seepage problems. Regular desilting is not carried out by community members because they claim it is difficult to do when even some of the communities have been provided with the tools to be used by organizations like GWI.

Crops grown are mostly cereals like Maize, Sorghum and rice in the rainy season and mostly vegetables including pepper; tomatoes and onions in the dry season. The yields of these crops are low because of poor soil fertility. Women are most often given the poor lands in terms of soil fertility to farm on. This discrimination does not promote gender equity and poverty alleviation among women and household food security, in general.

The rainfall pattern is becoming more and more erratic and poses a major challenge in the basin as most farmers do rain-fed farming. This contributes to the low yields especially for the early maize and millet. There is the need to therefore shift towards efficient and productive irrigation where farmers could make up for their losses.

Crop production in the Upper West region seems to be increasing. However, there is no corresponding increase in yields. So there is intensification of farming without necessarily improving productivity. This does not encourage the young folks in the communities to engage in active farming hence leads to migration of the youth to big cities in the countries for non-existent jobs.

Application of water in farms is mostly done with buckets and ropes or watering cans. This is somewhat inefficient and tiresome when large areas of lands are to be irrigated. Those who use water pumps also complain of high cost of fuel to run their pumps. Providing solar pumps with tight security could be an option out of this problem. GWI, CWSA and other organizations have introduced solar pumps to run community water supply systems which seem to be efficient. This could therefore be looked at in more detail through benefit-cost analysis.

There is the need to train the youth in most communities in non-farm based income generating activities or trades to supplement the income they generate from farming. This is indeed needed to ensure that they do not migrate to cities where it mostly ends up in hardships.

Productivity of irrigation or farming is low and so is water application. With poor soils and intensified agriculture, low yields seems to be the only result. Farmers need to be educated on
sustainable irrigation technologies and farming practices which would improve their crop yields. This cannot stop there! There is the need to train them also on micro-financing so they can be more productive and shift gradually from subsistence to commercial farming and livestock rearing.

Access to Markets is not a major problem since markets for food stuff and livestock are within 5km distance from most communities. In other communities farmers have to either walk or ride bicycles/motors over distances of more than 25km to sell their produce. There is the need to engage farmers in innovative ways of marketing their goods to ensure market queens do monopolise the system as is currently being done.

Good book or record keeping is essential for farmers so they can track their progress. Currently this is not done so it is difficult for farmers to quantify their productions and profit margins. They need to be taught how to carry out basic cost-benefit analysis.

The main transboundary issue in the basin has to do with the nomads also known as the “fulanis” who cause a lot of problems for the indigenes. Some of the issues raised include:

- Destruction of crops by their livestock
- Use of limited quantity of water in dugouts meant for the livestock of the indigenes
- Illegal possession and occupancies of lands meant for indigenes
- Raping of women
- Arm robbery

Another transboundary issue to be addressed in the basin is the issue of flooding where upstream releases from dams is purported to cause flooding downstream. This has to be studied critically with some hydrological (flood) models.

The platform to be created will have to find a novel way to address some of these pressing issues in the basin within Ghana taking into account existing traditional institutions and norms.

Water Allocation in the Upper West Region of the Black Volta Basin

A WEAP model was developed using climate (Rainfall, relative humidity, net evaporation, temperature, cloudiness fraction), hydrological (monthly stream flow) and demographic data sets including population and landuse for the Upper West Region Water Audit Section (UWRWAS).

Results show that there is enough water to meet all needs in the basin under all 3 climate scenarios considered (Reference, drier and wetter climate scenarios) with a 1 degree change in temperature. A schematic of the model displayed with a google map background is shown in the figure below. The figures below show some of the model inputs and outputs.
Schematic of the Upper West Region WEAP model

Annual Precipitation in the Black Volta subbasins within Ghana — Reference condition
Monthly Average Precipitation in the Black Volta basins within Ghana – Reference condition

Annual Precipitation in the Black Volta basins within Ghana – Drier Condition
Runoff/Infiltration generated in the Black Volta sub-basins within Ghana – Drier condition

Unmet water demands for all scenarios and all years

Water Governance in the Basin

Water is a vital resource which plays a major role in the developmental agenda of all the riparian countries of the Volta basin. There has been over exploitation and pollution of water resources base in the basin due to uncoordinated management and lack of water governance. Among the competing uses of water in each riparian state are irrigation, fisheries, domestic water supply and livestock watering. There also exist competition over water by upstream and downstream countries notably among them is that between Ghana and Burkina Faso. In order to eradicate suspicion and build trust among the states sharing the common resource, it is important to work towards establishment of a coordinated effort of water management and institutionalization of pragmatic governance systems.
Governance to say is the most influential factor, as far as organizing framework for decision making is concerned. As far as IWRM is concerned, there have been a lot of efforts in rolling out platforms where issues pertaining to the management of water resources are dealt with. One of such platforms was the Volta Water Governance Project (PAGEV) which operated from 2004-2007 (phase I) and continued until about 2011 with the second phase. This project was sponsored by IUCN in collaboration with Global Water Partnership (GWP) with the aim of improving water governance in the White Volta basin with particular focus on Ghana and Burkina Faso. The processes of the project accelerated the establishment of platforms across the border of the two countries, fostering consultations and joint planning. The PAGEV complemented the GEF supported Volta Basin Land and Water Management Programme, (GEF-Volta) involving all the six riparian countries, that aims to support coordination efforts in the eventual management framework for the Volta River Basin.6,7

Another platform that has ensured the promotion of IWM is the GLOWA Volta project which was funded by the German Federal Ministry of Education and Research. The GLOWA-Volta initiative began the process of developing a scientifically sound Decision Support System (DSS) for the assessment, sustainable use, and development of the Volta Basin’s water resources (WRC, 2002). This project is implemented in collaboration with established state institutions, such as the WRC of Ghana, within the White Volta Basin, during the period 2004 – 2006. The project was particularly seen as a way of generating and disseminating scientific information between Ghana and Burkina Faso and by so doing facilitating decision making on the management of the shared water resources.8

However, in the Black Volta Basin there is no active platform for IWRM. GWI through CARE and CRS established a platform for Water Management but unfortunately it became a WASH platform. It was very active at the beginning but seems to have died off. It would be good to revive this platform and see how to broaden its scope within the proposed IWRM strategy to be implemented.

Integration of GWI interventions into the National IWRM strategic framework

The WRC is the national institution mandated to regulate and manage water resources in the country and to coordinate government policies in relation to them. For all practical purposes WRC is yet to initiate on the ground, processes towards creation of management structure to coordinate water related issues in the Black Volta basin. To manage effectively water resources in the basin and to respond to current priorities, it is important to adopt a holistic approach to water resources management and development. One approach that has gained recognition worldwide is Integrated Water Resources Management (IWRM), which has been adopted by WRC and used to develop action plans for basins where management structures have been established including the Densu and White Volta basins. This way, the GWI could assist WRC...
while playing her ‘role’ and to draw lessons from the IWRM processes in the field worth sharing with WRC.

Since the inception of GWI in the year 2008 in the Black Volta basin, interventions have been implemented in communities that do not derive roots from any national framework for the said basin. It is imperative therefore, to initiate integrated water resources management processes in strong collaboration with WRC so as to buttress basis for the interventions being delivered in the project area while ensuring feedbacks towards policy change. While recognizing that GWI is a project with specific life span, association with WRC will seek to provide mechanisms for sustaining the interventions. Thus formalizing the relationship with the national institution is paramount in order to set pathways for influence and advocacy for practical solutions in the water and related sectors.

It is worth to note that financing of water resources development and management goes beyond the means of central government. The need to mobilize new sources of finance is pre-requisite towards achievement of expectations of vulnerable communities. Further, integrated management of water resources will be facilitated and enhanced if appropriate partnerships are developed among stakeholders, and capacity built to enable them to function effectively.

To ensure sustainable development of these finite resources, water resources management should be considered within the context of the following two main areas:

- Conservation of water resources to sustain quality and availability, health of the people and to guarantee the integrity of the environment.
- Regulation and control of water use and waste disposal, to stay within the natural capacity of the water resource base, which must necessarily maintain its regeneration and self-purification characteristics. Advocacy could help in this regard.

The implementation of IWRM should be geared towards ensuring sustainability of water resource in the basin and this could effectively be achieved by adopting the following measures;

- Strengthening the regulatory and institutional framework for managing and protecting water resources for water security and enhancing resilience to climate change
- Enhancing public awareness and interest in water resource management issues
- Improving access to water resources knowledge base to facilitate water resources planning and decision making
Vision for the sustainable development of the Black Volta Basin

In order to ensure food security and improved livelihood of the inhabitants, measures should be introduced to ensure the judicious use of the available water resources. Surface water resources can also be developed employing strict sector policies so as not to deplete the resource base of the basin. In so doing, farmers will access water for their farming activities which will culminate into livelihood improvement.

Irrigation schemes developed around small reservoirs have not been utilized at all in the basin. Less than 2% of planned irrigable areas are under actual irrigation\(^9\). This situation has to change with the major setbacks resolved.

GWI partners (CARE, CRS and IUCN) have assisted some communities to draw strategic IWRM Plans. These plans have been reviewed and realised to be too ambitious. It is therefore necessary to review these plans with the communities and draw a plan with a road map that is easily implementable.

The plans drawn could be the basis for a master plan for the basin. It would be expedient to start from the 3 upstream basins namely Dapola, Noumbiel and Vonkoro. GWI is already well known in these basins and so could give a smooth start of planned activities.

Evidence based-learning is the way out. This means that GWI would have to use some communities as pilots to initiate IWRM interventions in the basin through participatory learning and not just advocacy. Advocacy is good but on its own cannot achieve the intended objectives. For instance what advocacy can one do in a community that has unreliable and very low rainfall without a reservoir, dugout or a borehole to improve upon their livelihoods and alleviate their poverty? Talks alone would not materialise, the talks must be followed with actions on the ground. That is the only way the commitment of the community (grassroot stakeholders) can be gained. This could be out-scaled when they are successful.

IWRM plans without action plan is less useful. GWI and its partners would have to set up a basin platform to review plans drawn or to be drawn and provide concrete activities (action plans) towards implementing those IWRM plans.

Most often IWRM awareness is created without any baseline study. It is important for GWI to conduct a baseline study to enable it measure the impact of its activities.

Communication of IWRM Plans, activities, strategies and results could be done in a number of ways. Most notable among these are the use of radio and TV programs in local dialects, Newsletters, brochures, National and Private Newspapers, Symposiums, Quizzes, use of sign boards (attractive advertisements/education) among others.

At the local communities, Video-vans can be sent occasionally to show documentaries that will educate and motivate the inhabitants to continue with their IWRM activities.

\(^9\) DATA FROM GIDA, UPPER WEST REGION

XV
District water quality indices could be published quarterly to motivate the district assemblies to carry on with their IWRM activities. Rewards or awards could also be given to the best districts and individuals and advertised to motivate others to do likewise. T-shirts and Cups/hats could be printed with Key IWRM messages on them and given to people as souvenirs.

Giving regular talks on IWRM issues in Primary, Secondary and Tertiary education institutions could also be another avenue to educate people on IWRM issues. These schools visited could be given the souvenirs mentioned above to take home which might generate discussions of these subjects at the homes of these students.

Stakeholders at the validation workshop came up with a vision for the UWRWAS as “Sustainable Use of Resources for Food Security and Economic Growth by All for All by 2025” with a mission to “ensure food security and economic growth through the development and effective utilisation of resources in the Black Volta Basin in an equitable and sustainable manner for the present and future generations”.

Conclusions

The following conclusions have been drawn from the study:

- The Black Volta Basin in Ghana is delineated into 3 Water Audit Sections to facilitate its management.

- The water resources of the Black Volta have been assessed. Almost all populations depend on groundwater for their domestic water requirements. The water available in the basin could meet the water demands of the various uses by 2030 except Bui hydropower which would benefit largely on flows from outside Ghana.

- A number of small reservoirs and dugouts in the Upper West Region are not being used productively owing to their silted condition thereby reducing storage. Due to the poor construction of some dugouts /reservoirs, the water stored dries up when the water is needed most. Moreover, management of the water facilities is a challenge.

- There is high potential to increase the cropping areas within the basin in Ghana owing to the suitability of land. Sustainable farming practices are required to forestall biodiversity in the basin, and therefore the protection of reserved areas.

- There is no active platform for IWRM in the basin currently. Activities of water related technical institutions are very much uncoordinated. There is a need for a basin framework on IWRM and coordination to ensure coherence.

- The value chain approach with associated platforms is hardly used in the basin in Ghana with the exception of the seedlings platform being managed by MOFA and SARI under the auspices of UNDP in Wa. This could provide opportunities for all stakeholders to meet and discuss ways of solving existing problems efficiently and effectively.
The use of TV and Radio programs with phone-in sections in local dialects and English, Newspapers, brochures, sign boards, souvenirs, public lectures, talks, symposia, and publishing of Water Quality Index (WQI) of districts quarterly in the media with awards are some of the most promising communication strategies identified.

Recommendations
After a careful analyses the following recommendations have been made:

- There is a large potential to increase livestock production in the Ghana portion of the basin. However, women could be dotted with small ruminant support to improve their social capital towards strengthening livelihoods of households.
- Integrated watershed management with trans-boundary orientation is key in the basin and should be pursued with neighboring countries.
- Advocacy on agriculture especially irrigation is good but has to be done together with evidence based learning with some infrastructure and demonstrations to enhance the likelihood of adoption.
- For farmers to be productive, improve their yields and also be able to feed their livestock by growing a mixture of cereals and legumes including groundnut and vegetables in the dry season. The residues from these crops can be used to feed animals as supplementary feeds.
- GWI has started a platform for pastoralists and should continue to facilitate innovative ways to address issues with cattle herdsmen in the basin within Ghana taking into account international water laws and existing international relations and treaties between riparian countries.
- Platforms for IWRM must be established at the basin level through consultative process. The composition shall be determined by the stakeholders in close collaboration with the Water Resources Commission. The entire process of setting up the IWRM platform should be monitored, evaluated and documented.
- In the future, it is imperative to establish formal collaborative arrangements with state institutions such that the project would operate with the scope of the national orientation, ensuring feedbacks of lessons learned towards influence and policy change while ensuring sustainability.
- The next study should look at fisheries in the Black Volta River in detail.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AESL</td>
<td>Architectural and Engineering Services Limited</td>
</tr>
<tr>
<td>AGRA</td>
<td>Alliance for a Green Revolution in Africa</td>
</tr>
<tr>
<td>CRS</td>
<td>Catholic Relief Services</td>
</tr>
<tr>
<td>CSIR</td>
<td>Centre for Scientific and Industrial Research</td>
</tr>
<tr>
<td>CWSA</td>
<td>Community Water and Sanitation Agency</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>GAEC</td>
<td>The Ghana Atomic Energy Commission</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environmental Facility</td>
</tr>
<tr>
<td>GIDA</td>
<td>Ghana Irrigation Development Authority</td>
</tr>
<tr>
<td>GLOWA</td>
<td>Global Change in the Hydrological Cycle</td>
</tr>
<tr>
<td>GMet</td>
<td>Ghana Meteorological Agency</td>
</tr>
<tr>
<td>GSB</td>
<td>The Ghana Standards Board</td>
</tr>
<tr>
<td>GSS</td>
<td>Ghana Statistical Services</td>
</tr>
<tr>
<td>GWCL</td>
<td>Ghana Water Company Limited</td>
</tr>
<tr>
<td>GWI</td>
<td>Global Water Initiative</td>
</tr>
<tr>
<td>GWI</td>
<td>Global Water Partnership</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>IWM</td>
<td>Integrated Watershed Management</td>
</tr>
<tr>
<td>IWRM</td>
<td>Integrated Water Resources Management</td>
</tr>
<tr>
<td>MOFA</td>
<td>Ministry of Food and Agriculture</td>
</tr>
<tr>
<td>NADMO</td>
<td>National Disease Management Organisation</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organization</td>
</tr>
<tr>
<td>PAGEV</td>
<td>Project for Improving Water Governance in the Volta Basin</td>
</tr>
<tr>
<td>SARI</td>
<td>Savannah Agriculture Research Institute</td>
</tr>
<tr>
<td>SRI</td>
<td>Soil Research Institute</td>
</tr>
<tr>
<td>TLU</td>
<td>Tropical Livestock Unit</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>VBA</td>
<td>Volta Basin Authority</td>
</tr>
<tr>
<td>WASH</td>
<td>Water Sanitation and Health</td>
</tr>
<tr>
<td>WATSAN</td>
<td>Water and Sanitation</td>
</tr>
<tr>
<td>WEAP</td>
<td>Water Evaluation and Planning</td>
</tr>
<tr>
<td>WRC</td>
<td>Water Resources Commission</td>
</tr>
<tr>
<td>WRI</td>
<td>Water Research Institute</td>
</tr>
<tr>
<td>WUA</td>
<td>Water Users Association</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction .. 1
 1.1 Background to the study ... 1
 1.2 Objectives and Scope of the study ... 1
 1.2.1 Objective of the study ... 1
 1.2.2 Scope of work ... 2
 1.3 Work Plan ... 2

2. Study Area .. 3
 2.1 Political or Administrative Settings of the Black Volta Basin 3
 2.2 Population .. 5
 2.3 Landuse/ Landcover ... 7
 2.4 Geology and Soil .. 11
 2.5 Drainage Network ... 17
 2.6 Vegetation ... 17
 2.7 Climate ... 18
 2.7.1 Rainfall and Evaporation ... 18
 2.7.2 Temperature and Humidity .. 20
 2.8 Agriculture Labour Force .. 20
 2.9 Suitability of land for Agriculture ... 21

3. Hydrology of the Black Volta Basin ... 22
 3.1 The basin approach ... 22
 3.2 Sub-Catchments within the Volta Basin ... 24
 3.3 The Black Volta Basin ... 24
 3.4 Surface Water .. 27
 3.4.1 Surface Water Availability within Ghana ... 27
 3.4.2 Surface Water Quality ... 32
 3.5 Groundwater ... 33
 3.5.1 Groundwater Assessment ... 33
 3.5.2 Groundwater Quality ... 36
 3.6 Limitations of Water Resources Assessment in the Black Volta Basin 38
 3.6.1 Meteorological Stations .. 38
 3.6.2 Hydrological stations .. 39

4. Water demand in the basin ... 40
 4.1 Current and Projected Water demands and its potential Impacts 40
 4.1.1 Agriculture water demand .. 40
 4.1.2 Crop water requirements .. 41
 4.1.2.1 Rainfed Farming ... 41
 4.1.2.2 Irrigated farming .. 41
 4.1.3 Livestock Watering ... 42
 4.1.4 Domestic water demand .. 43
 4.1.5 Industrial demand (Mining) ... 43
 4.1.6 Small Reservoirs and Dugouts .. 43
 4.1.7 Environment ... 44

5. Challenges regarding use of water in the Black Volta basin of Ghana 45
 5.1 Conditions of Dams, Dugouts and Boreholes ... 45
5.2 Cropping Patterns in Sub-catchments

5.3 Landuse and management of Sub-catchments

5.4 Farm Operations and Maintenance Culture

5.5 Training and Advocacy on rainfed farming and irrigation

5.6 Transboundary Issues

6. Sustainable Water Allocation

6.1 Water demand and allocation for various uses

6.1.1 Parameterisation and Scenarios used in the WEAP Model for the Upper West Region

6.1.2 Agriculture (Irrigation)

6.1.3 Domestic purposes

6.1.4 Fishing

6.1.5 Livestock

6.1.6 The environment

6.2 Possible Impacts of the Bui dam on water resources in the basin

7. Water Governance in the Basin

7.1 Current state of water Governance in the basin including trans-boundary issues

7.2 Stakeholders involved in Water Resources Management

7.3 Platforms on Integrated Watershed Management (IWM)

7.4 Role of Institutions in fostering sustainable IWRM in the basin

7.5 Integration of GWI interventions into the National IWRM strategic framework

7.5.1 Integrating GWI Interventions into National IWRM strategic framework – Opportunities and Threats

8. Vision for the sustainable development of the Black Volta Basin

8.1 Increasing food security

8.2 Immediate “next” steps

8.2.1 IWM Plans

8.2.2 Action plan

8.2.3 Road Map and Roles of Key stakeholders

8.2.4 Communication Strategy and Products that can promote IWRM in the basin

8.2.5 Vision of IWRM in the basin

9. Conclusions and Recommendations

9.1 Conclusions

9.2 Recommendations
List of Tables
Table 1 District population distribution in the Upper West Region ... 6
Table 2: Sub-basins in the Black Volta basin ... 24
Table 3: Portions of Sub-basins within Ghana ... 27
Table 4: Summary of Water Quality in the Volta basin ... 33
Table 5: Groundwater characteristics in the Volta basin ... 33
Table 6: Summary Groundwater Quality for the Volta Basin .. 37
Table 7: Gauge Stations of Interest to the Black Volta Basin in Ghana .. 39
Table 8: Projected irrigable lands for rice cultivation as per country in the Volta Basin 40
Table 9: Cropped area for major crops in the Upper West Region of Ghana – 2011 in Hectares 41
Table 10: Rainfall and Length of Growing seasons ... 42
Table 11: Livestock count in the Upper West Region .. 43
Table 12: Livestock Water demand in the Upper West Region of Ghana ... 46
Table 13: Boreholes and Reservoirs in the sub-basins of the Black Volta .. 46
Table 14: Urban Water demand in the within the Black Volta in the Upper West Region 57
Table 15: Some Important Legislative Reforms in the Basin ... 61
Table 16: A SWOT analysis of GWI in Wa ... 66
List of Figures
Figure 1: The Black Volta within the Volta Basin ... 3
Figure 2: Political/Administrative regions within the Black Volta Basin 4
Figure 3: Population Density in the Black Volta Basin ... 6
Figure 4: Proportion of land use/cover and projection for the Volta Basin 8
Figure 5: Generalised Landuse map of the Black Volta Basin ... 8
Figure 6: Detailed Landcover map prepared from MERIS 2004/2006 Composite 10
Figure 7: Landuse map of Ghana .. 11
Figure 8: Dominant Soil in the Black Volta basin ... 12
Figure 9: National Soil Classification for the Upper West Region of Ghana in the Volta basin 13
Figure 10: Soil Map of Ghana ... 14
Figure 11 Geological Map of the Volta Basin ... 15
Figure 12: Agro-ecological Zones in the BV ... 18
Figure 13: Rainfall pattern of the basin within Ghana based on 1990 Isohyets 19
Figure 14: (a) Temperature and (b) Evapo-transpiration over Ghana 20
Figure 15: Climate, Soil, Slope and terrain constraints for Agriculture in the Black Volta Map. 21
Figure 16: River basins in Ghana ... 23
Figure 17: Watersheds within the Volta Basin ... 24
Figure 18: Sub-basins in the Black Volta Basin .. 25
Figure 19: Portions of Sub-basins within Ghana ... 26
Figure 20: Monthly flows in the Black Volta Basin ... 27
Figure 21: Monthly flows for March at Lawra ... 28
Figure 22: Monthly flows for September at Lawra ... 28
Figure 23: 30-day Minimum flow at Lawra ... 29
Figure 24: Monthly flows for March at Bui ... 29
Figure 25: Monthly flows for September at Bui ... 30
Figure 26: 30-day minimum flow at Bui .. 30
Figure 27: Monthly flow for March at Bamboi ... 31
Figure 28: Monthly flow for September at Bamboi ... 31
Figure 29: 30-day Minimum flow at Bamboi ... 32
Figure 30: Spatial distribution of groundwater production in m³/y per 9x9 km² cell 12 35
Figure 31: Average daily per person of groundwater consumption by district 36
Figure 32: Hydro and Meteo Stations in the basin key for Ghana’s water resources assessment 38
Figure 33: Distribution of Small Reservoirs and Dugouts in (a) the Black Volta basin and (b) portion of the Black Volta basin within Ghana ... 44
Figure 34: Boreholes within the Black Volta basin in Ghana .. 45
Figure 35: Yield trends in the Upper West Region of some major crops 47
Figure 36: Annual Production of crops in the Upper West Region 35 47
Figure 37: The Schematic view of the WEAP Model for the Black Volta basin within the UWR of Ghana .. 53
Figure 38: The Schematic view of UWR WEAP Model in Google earth 54
Figure 39: Annual Precipitation in the Black Volata subbasins within Ghana – Reference condition .. 55
Figure 40: Monthly Average Precipitation in the Black Volta basins within Ghana – Reference condition .. 55
Figure 41: Annual Precipitation in the Black Volta basins within Ghana – Drier Condition 56
Figure 42: Runoff/Infiltration generated in the Black Volta sub-basins within Ghana – Drier condition .. 56
Figure 43: Water Supply requirement at Wa City .. 57
Figure 44: Unmet water demands for all scenarios and all years ... 58
Figure 45: Biodiversity loss map of the Volta Basin ... 62
Figure 46: Communities in the Black Volta basin in Ghana with a 3km buffer from the left bank of the Black Volta River .. 69

List of Plates
Plate 1: Transport of Goods across borders ... 49
Plate 2: A picture showing the interactions between neighbouring communities along the Black Volta ... 50
1. INTRODUCTION

1.1 Background to the study
The Global Water Initiative (GWI) is a worldwide program that is financed by the Howard G. Buffet Foundation. The long term goal of GWI is to generate lessons from Integrated Water Resources Management processes that inform policy change in the water sector, establishing platforms and frameworks that promote advocacy towards good governance of water resources.

This program is implemented in Ghana by a consortium of NGOs namely CARE International and Catholic Relief Services (CRS) together with the Regional Office for Central and West Africa of the International Union for Conservation of Nature (IUCN-PACO), based in Ouagadougou, Burkina Faso.

Recognizing that a river basin is the unit for planning in the Ghana Water Policy (2007), steps have been taken by IUCN-PACO to provide information that will lead to understanding the hydrology and water resource characteristics of the Black Volta basin. In view of this, Allwaters Consult Limited was contracted by IUCN to undertake this study in Ghana to guide future implementation of Integrated Watershed Management in the Black Volta basin.

1.2 Objectives and Scope of the study

1.2.1 Objective of the study
The overall objective of the study was to prepare a document that will guide the future interventions of GWI in Ghana, characterise water resources (both current and future) of the Black Volta basin highlighting sustainable operational mechanisms including constraints that govern water resources.

Specifically, the assignment sought to

- Assess the hydrological situation of the Black Volta basin, delineate its’ extent and limits, determine the interaction with other hydrologic systems, and the trans-boundary zone with Burkina Faso
- To understand the stakes of water resources, the potential of surface water and groundwater systems, uses, and stakeholders (whose activities impact directly or indirectly), management constraints as regards exploitation and suitability
- To assess the state of dug-outs, dams, wells, and characterize the agricultural or irrigation water use (current and future) on one hand, and the cultivated areas around these water bodies: surface, types of crop, seasonal (or not) use of water, on the other hand
- To examine the ecosystem approach into river basin planning and management of the Black Volta.
1.2.2 Scope of work

The work carried out included the following:

i. Delimited the Black Volta basin and delineated the sub-catchments taking into account the demographic and political administrative settings.

ii. Took inventory of, and state of water systems including reservoirs/dams, dug-outs and wells from National Institutions namely Ministry of Food and Agriculture (MOFA) and Ghana Irrigation Development Authority (GIDA).

iii. Assessed the agricultural/irrigation land use around the water systems noted in point (ii) above in each sub-catchments including the crops grown and cropping pattern.

iv. Assessed water use including irrigation agriculture and projected developments in the basin, assessing their impacts/threats on the water resource and land.

v. Examined the current state of water governance in the basin, prospects including trans-boundary mechanisms, and the processes that foster integration of GWI interventions into national IWRM strategic frameworks.

vi. Made proposals that will enhance better management of the water and other natural resources of the Black Volta basin.

vii. Formulated a clear vision for the sustainable development of the Black Volta Basin Resources.

viii. Proposed communication strategy or products with respect to IWRM that highlight water education among primary stakeholders while informing secondary actors across scales of the hydrologic characteristics of the Black Volta.

1.3 Work Plan

The work was carried out in three blocks. Block 1 involved desktop studies of the Black Volta and the Volta basin in general; Block 2 covered field work where the consultant visited GWI communities and other communities of interest and Key stakeholders in the basin. The last block - Block 3 was mainly about report writing and validating the study.
2. STUDY AREA

2.1 Political or Administrative Settings of the Black Volta Basin

The Black Volta basin (shown in Figure 1) is between Latitude 7°00’00”N and 14°30’00”N and Longitude 5°30’00”W and 1°30’00”W, and covers an estimated area of about 130,400 km² as against other figures stated in some literature as 149,000km². The Black Volta constitutes about 32.6% of the Volta basin. This normally occurs when some portion of Bamboi which belongs to the Lower Volta is added to the basin. The portion within Ghana (with Bamboi excluded) covers an area of about 18,384km² constituting 14% of the basin. The Black Volta river basin is a trans-national river system that stretches from North to South through Mali, Burkina Faso, Ghana and Cote d’Ivoire, and from Burkina Faso, Cote d’Ivoire and Ghana from West to East.

Figure 1: The Black Volta within the Volta Basin

The headwater of the main river course is from Burkina Faso. It then flows to Mali and then flows downstream along the border between Ghana and Cote d’Ivoire before discharging into the Volta Lake in Ghana through Bui and Bamboi. It covers a distance of about 1350km from Burkina Faso to the Volta Lake. The trans-national character of the river basin gives it strategic importance towards strengthening bi/multi lateral cooperation, and to build trust among riparian states in the management of shared natural resources, and in particular, water resources.
Politically or administratively, the basin covers 19 districts (based on the 170 District demarcations) in Ghana, 14 provinces in Burkina Faso, 2 departments in Cote d'Ivoire and 3 Regions in Mali. Figure 2 shows the map of districts and provinces in Ghana and Burkina Faso partially or wholly within the Black Volta basin.

Figure 2: Political/Administrative regions within the Black Volta Basin
2.2 Population

As of the year 2000 the Black Volta was home to about 4.5 million people in Burkina Faso, Ghana, Cote d’Ivoire and Mali. This population is estimated to grow to about 8 million by the year 2025. The population distribution by district, province, department and region is given in Appendix2. Table 1 gives the population distribution at district level based on the 2010 Population and housing census carried out by the Ghana Statistical Services (GSS). Population density in the basin ranges from 8 to 133 people/km². Bouna department in Cote d’Ivoire and Sissala district in Ghana both have the lowest of 8 and Lawra district in Ghana has the highest of 133. The average population density is 43 people/km². The population density map of the Black Volta is shown in Figure 3. In the valleys in the Black Volta people are prone to Onchocerciasis which is the major health threat in the basin.

Focusing on the Upper West Region of Ghana where GWI operates currently, the total population of the region is 702,110 people recording about 18% increase relative to 576,583 in the year 2000. Until the year 2004, the Upper West region consisted of five districts. Thus four new districts were carved out from the existing five districts.

10 BASED ON UNEP POPULATION COUNT IN 2000 AND BASED ON OLD DISTRICT/DEPARTMENT/PROVINCE/REGIONAL DEMARCATION
11 GSS (2012), POPULATION AND HOUSING CENSUS CARRIED OUT IN 2010
Figure 3: Population Density in the Black Volta Basin

Table 1 District population distribution in the Upper West Region

<table>
<thead>
<tr>
<th>District</th>
<th>Total</th>
<th>Male</th>
<th>Female</th>
<th>% of Female</th>
<th>% Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wa West</td>
<td>81,348</td>
<td>40,227</td>
<td>41,121</td>
<td>50.5</td>
<td>-</td>
</tr>
<tr>
<td>Wa Municipal</td>
<td>107,214</td>
<td>52,996</td>
<td>54,218</td>
<td>50.6</td>
<td>30</td>
</tr>
<tr>
<td>Wa East</td>
<td>72,074</td>
<td>36,396</td>
<td>35,678</td>
<td>49.5</td>
<td>-</td>
</tr>
<tr>
<td>Sissala East</td>
<td>56,528</td>
<td>27,503</td>
<td>29,025</td>
<td>51.3</td>
<td>-</td>
</tr>
<tr>
<td>Nadowli</td>
<td>94,388</td>
<td>44,724</td>
<td>49,664</td>
<td>52.6</td>
<td>-</td>
</tr>
<tr>
<td>Jirapa</td>
<td>88,402</td>
<td>41,592</td>
<td>46,810</td>
<td>53.0</td>
<td>5</td>
</tr>
<tr>
<td>Sisala West</td>
<td>49,573</td>
<td>24,151</td>
<td>25,422</td>
<td>51.3</td>
<td>-</td>
</tr>
<tr>
<td>Lambussie Karni</td>
<td>51,654</td>
<td>24,952</td>
<td>26,702</td>
<td>51.7</td>
<td>-</td>
</tr>
<tr>
<td>Lawra</td>
<td>100,929</td>
<td>48,641</td>
<td>52,288</td>
<td>51.8</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td>702,110</td>
<td>341,182</td>
<td>360,928</td>
<td>51.4</td>
<td>-</td>
</tr>
</tbody>
</table>
2.3 Landuse/ Landcover

In the Black Volta basin, most lands are used for agriculture with bush fallow food crop cultivation. The food crops cultivated are mostly under rain-fed grown of cereals including rice, millet, sorghum, and maize; yam, cassava, groundnuts and beans. In the dry season some farmers grow vegetables including tomatoes, pepper, okro, lettuce, cabbage and pumpkin especially in the Lawra district. Most farmers practice compound farming since lands closer to their houses are somewhat fertile. However, in the Lawra district the lands are highly degraded both in terms of physical status and soil fertility levels and can hardly support crop cultivation which contribute to low crop yield. This is exacerbated by the rather high population density.

Animal grazing in the basin is mostly done on free range except in the dry season, where livestock owners/herdsmen migrate with their animals in search of water and feed in nearby communities. Hence in the basin there are no clearly demarcated lands for grazing. In general, the vegetation is greener in the lower reaches of the basin in Ghana that favors migration of cattle inland (figure 5). This practice is not limited to Ghana. For communities lying along the border of the Volta basin riparian countries, cattle herdsmen migrate from Burkina Faso to Ghana in search of greener pasture. In so doing, they, more often than not, use unapproved routes into the country as their movement is influenced by the presence of green vegetation in field in the hinterland. Their migration has far reaching consequences as regards the livelihoods of the recipient communities which mostly has the tendency to generate conflicts. Largely, communities on either side of the border are related family-wise, and though may be seen within the national lens as different people, locally could dispose mechanisms that foster peaceful co-existence in the trans-border region. This orientation needs to be formalized in order to strengthen the fraternity and cooperation of the two countries.

Figure 4 shows the landcover changes in the Volta basin. It could be deduced from the figure that most grass lands are being turned into Agriculture Land. Forest reserve had been depleted but the Ghana portion appears to be intact which is commendable. The current situation would be challenged in the coming years with the onset of industrial development including mining and population expansion such as the case of Lawra district. Clearly, environmental awareness creation is necessary to inform a kind of controlled development before the environment is irresponsibly tempered with. The general and detailed landcover/landuse maps for the basin are presented in Figures 5 and 6.

12 Barry et al., 2005. Comprehensive Assessment of Water Management in Agriculture. Comparative study of river basin development and management
Figure 4: Proportion of land use/cover and projection for the Volta Basin

Figure 5: Generalised Landuse map of the Black Volta Basin

13 Water Audit Update Study, 2012
LANDCOVER MAP PREPARED FROM MERIS 2004/2006 COMPOSITE IMAGE
Figure 6: Detailed Landcover map prepared from MERIS 2004/2006 Composite
The landcover maps prepared for the Black Volta basin show that in Burkina Faso most of the land has been developed for Agriculture (Rainfed and Irrigated) whereas in Ghana most of the
land is under forest/grassland cover. There is therefore the potential to increase Agriculture land, but this has to be done in a sustainable manner. A comprehensive landuse map of the basin does not exist. In Ghana the Volta Basin Research project at University of Ghana, Legon developed a landuse map which is shown in Figure 7. This is however, old and needs to be updated.

![Figure 7: Landuse map of Ghana](image)

2.4 Geology and Soil

The dominant soils in the Black Volta basin according to the FAO soil classification, as shown in Figure 8 are Luvisols and Gleysols with altitudes ranging between 60m and 762m above m.s.l. In the Ghana portion of the basin, Ferric Luvisols is the most dominant.

Soil Research Institute (SRI) carried out a more detail soil classification for some parts of Ghana. An example of the Soil classification system for the Upper West Region portion of the Black Volta basin is shown in Figure 9. Detailed soil description is given in Appendix 3. According to the National Soil Classification system the predominant soil in the Upper West is Lixisol which comprise soils that have higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays17.

16 MAP PRODUCED USING DATA FROM LAND AND WATER DEVELOPMENT DIVISION, FAO, ROME (1995)
17 SRI SOIL ATTRIBUTE DATA (UNDATED)

12
A soil map of Ghana produced by Obeng in 1971 and adapted by Gordon and Amatekpor is given in Figure 10. From the figure, the Black Volta Basin in Ghana is characterized mainly by Savannah Ochrosols and patches of Savannah Ochrosols-Lithosols.
The geology of the Black Volta Basin is mostly granite, Birimian (known for its Gold Mining Potential), the Voltaian systems and to some extent the Tarkwaian system as shown in Figure 11 (The legend of the map obtained is however not very clear). The Birimian system is made up of metamorphosed lavas, pyroclastic rocks, phyllites, schists, tuffs, and greywackes while the Tarkwaian formation consist of quartzites, phyllites, grits, conglomerates, and schist. In the basin Groundwater occurs mostly as a result of fractures in rocks and not its inherent porosity.\(^7\)

\(^{18}\) GORDEN AND AMATEKPOR (1999): THE SUSTAINABLE INTEGRATED DEVELOPMENT OF THE VOLTA BASIN IN GHANA
Figure 11 Geological Map of the Volta Basin

2.5 Drainage Network
The Black Volta basin is drained by the Bougouriba, Gbongbo, Grand Bale, Voun Hou, Sourou, Wenare, Bambassou, Bondami, Mouhoun (main Black Volta), Tain and Poni rivers as main tributaries. The river network of the basin is shown in Figure 18.

2.6 Vegetation
A map of the Agro-ecological zones in Burkina Faso and Ghana within the Black Volta is shown in Figure 12. Most part of the basin fall within the Savannah zone.
2.7 Climate

2.7.1 Rainfall and Evaporation
In the Black Volta basin, annual rainfall values vary from about 1043mm to 1270mm to the south. The minimum potential evaporation is about 1450mm/year to about 1800mm/year and average runoff is about 243m3/year. The mean monthly runoff from the basin within Ghana varies from a maximum of 623m3 to a minimum of about 2m3. The rainfall, temperature and evapo-transpiration patterns in the basin within Ghana are presented in Figures 13, 14a and 14b.

20 MAP PRODUCED USING DATA FROM THE GLOWA VOLTA BASIN KIT
Figure 13: Rainfall pattern of the basin within Ghana based on 1990 Isohyets
2.7.2 Temperature and Humidity

Temperature in Ghana normally never falls below 24°C since the country is on the equator22. Annual mean temperature in the Volta basin is between 27-30°C and in the Black Volta, 26°C. Daily temperature rises as high as 44°C during the day and could fall to 15°C at night. The hottest Month is March-April and the coolest, August10.

Relative humidity is between 20-30% in the harmatan season and 70-80% in the rainy season10.

2.8 Agriculture Labour Force

Field survey conducted in the Black Volta basin within Ghana has shown that the young population (18-40years) mostly migrate to big cities like Kumasi and Accra often for non-existent jobs. The active age group engaged mostly in subsistence farming is between 45-60 years.

22 BARRY ET AL., 2005. COMPREHENSIVE ASSESSMENT OF WATER MANAGEMENT IN AGRICULTURE. COMPARATIVE STUDY OF RIVER BASIN DEVELOPMENT AND MANAGEMENT.
2.9 Suitability of land for Agriculture

Figure 15 shows that there are very little constraints with regards to use of land in the Black Volta for Agriculture. These parameters analysed include climate, soil, slope and terrain. From the map, all the labels are below 20 which is the range for lands with very low constraints or invariably very high suitability for Agriculture on a global scale.

Figure 15: Climate, Soil, Slope and terrain constraints for Agriculture in the Black Volta Map

3. HYDROLOGY OF THE BLACK VOLTA BASIN

3.1 The basin approach

In Ghana, the Water Resources Commission (WRC) considers the whole portion of the Black Volta basin in Ghana as its unit of planning for IWRM. Figure 16 shows the basins in Ghana with WRC basin offices hatched. The rest of the basins are yet to be considered for a structured implementation of IWRM plans. GWI’s programme in the Black Volta basin will therefore go a long way to support WRC fulfill its mandate which is to promote IWRM in Ghana through water use regulation, pollution monitoring and water resource assessment activities for effective planning at river basin level. Hence GWI could facilitate the setting up of a WRC basin office in the Black Volta and contribute to the effective implementation of Watershed Management in the basin.

Currently, WRC is operating in Densu, the White Volta, Ankobra, Pra and Tano basins. The basins were set up in the same chronological order with Densu being the first basin to be set up and Tano the last one (which makes it the most current). The setting up of the basins has largely been due to prioritization and urgency for the solution of problems identified in the respective basins.

The Densu basin was the first basin to be set up in Ghana. The major problem identified in the basin was pollution from farmers and industries. The second basin, the White Volta basin was set up to resolve trans-boundary issues between Ghana and Burkina Faso, and in the process foster cooperation and good neighborliness between the two countries. The third basin was the Ankobra basin set up in the South-Western portion of the Country due to the increase in mining activities that was polluting the water bodies in the basin. The fourth basins; Pra was set up to resolve issues with population explosion which results in pollution. In addition to fostering good cooperation between Ghana and Cote d’Ivoire, the Tano (fifth basin) was also set up to curb pollution from mining activities in the basin. Steps are being taken to operationalize fully the two latter basin secretariats. A map of the river basins in Ghana is shown in Figure 16.

In view of this, it is not farfetched to say that there is a need to look at trans-boundary issues between Ghana, Burkina Faso and Cote D’Ivoire in the Black Volta basin together with land degradation and pollution from agriculture activities. Another major issue in the basin is poverty and inadequate food security. While these issues are of national importance and require the attention of stakeholders across scales, the present study could mark the process towards the establishment of consultative forum for integrated watershed management of the Black Volta basin, and to implement prioritized action(s) in a coordinated and structured manner.
Figure 16: River basins in Ghana
3.2 Sub-Catchments within the Volta Basin

There are about 25 Sub-catchments/basins within the Volta basin (shown in Figure 17). This depends to a large extent on the level of details required for the analysis under consideration since these sub-basins could be divided further.

![Figure 17: Watersheds within the Volta Basin](image)

3.3 The Black Volta Basin

The number of sub-basins normally delineated for a watershed/basin depends on the availability and consistency of hydrological data needed for modeling. In Figure 18, the Black Volta basin has been divided into 9 sub-basins.

<table>
<thead>
<tr>
<th>Name</th>
<th>Area (km²)</th>
<th>Name</th>
<th>Area (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Boromo</td>
<td>38171</td>
<td>7. Nwokuy</td>
<td>10474</td>
</tr>
<tr>
<td>4. Dapola</td>
<td>31680</td>
<td>9. Vonkoro</td>
<td>5347</td>
</tr>
</tbody>
</table>

DATA USED TO PREPARE THE MAP IS FROM BFP VOLTA (2008)
Figure 19 shows the portions of the Black Volta sub-basins that fall within Ghana. There are 5 sub-basins that fall within Ghana. These are the Bamboi, Bui, Dapola, Noumbiel and Vonkoros sub-basins. Table 3 shows the proportions of the sub-basins within Ghana.

MAP ADAPTED USING DATA FROM THE VOLTA BASIN FOCAL PROJECT (2008)
Figure 19: Portions of Sub-basins within Ghana
Table 3: Portions of Sub-basins within Ghana

<table>
<thead>
<tr>
<th>Name</th>
<th>Area of Sub-basin (km²)</th>
<th>Area of sub-basin within Ghana (km²)</th>
<th>% of Area within Ghana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bamboi</td>
<td>7525</td>
<td>6676</td>
<td>88.7</td>
</tr>
<tr>
<td>Bui</td>
<td>11590</td>
<td>3338</td>
<td>28.8</td>
</tr>
<tr>
<td>Dapola</td>
<td>31680</td>
<td>2138</td>
<td>6.7</td>
</tr>
<tr>
<td>Noumbiel</td>
<td>12499</td>
<td>3663</td>
<td>29.3</td>
</tr>
<tr>
<td>Vonkoro</td>
<td>5347</td>
<td>2569</td>
<td>48.0</td>
</tr>
</tbody>
</table>

3.4 Surface Water

3.4.1 Surface Water Availability within Ghana

The mean runoff in the Black Volta is estimated at 7 km³ per annum\(^{26}\). The driest and wettest months are March and September, respectively. Monthly flows in Lawra (upstream), Bui (Midstream) and Bamboi (downstream) is shown in Figure 20\(^{27}\).

![Figure 20: Monthly flows in the Black Volta Basin](image)

All stations in the Black Volta basin of Ghana, with the exception of Chache, have been selected and used for the analysis. There are four stations in total. Three (3) of them namely Lawra, Bui and Bamboi were selected to represent the upstream, midstream and downstream of the basin in Ghana respectively. Figures 21-29 show the flows for March and September and the monthly minimum flows in the basin fixed as the 25 percentile flow for Lawra, Bui and Bamboi.

The 1990s started with the evolution of a number of small reservoirs and medium scale dams in the Black Volta basin. The period before the dams is referred to in this section as pre-impact and the period after; post-impact since the dams could alter flows within the basin.

\(^{26}\) **Andreini et al. (2000). Volta Basin Water Balance**

\(^{27}\) **Data analysed using the Indicators of Hydrologic Alterations (IAH)**
Figure 21: Monthly flows for March at Lawra

Figure 22: Monthly flows for September at Lawra
Figure 23: 30-day Minimum flow at Lawra

Figure 24: Monthly flows for March at Bui
Figure 25: Monthly flows for September at Bui

Figure 26: 30-day minimum flow at Bui
The minimum monthly gauge flow of about 16m3/s occurs at Lawra and the maximum of 52m3/s occurs in Bamboi for the basin. This shows that there are untapped water resources in the basin which could be harnessed for productive uses to improve livelihoods.
3.4.2 **Surface Water Quality**

Continuous monitoring of the surface water quality is hardly carried out in the Black Volta basin. Monitoring is done by specific projects for their own purposes and this is not sustained when they end. The latest water quality assessment report available is dated 1996. This was carried out by Larmie and Annang but the data is from 1976 to 1978\(^{28}\). Water quality data for the basin is therefore very limited and since it is not continuous can hardly be used for any meaningful analysis.

Institutions that generate water quality data in Ghana include the Architectural and Engineering Services Limited (AESL) Hydro Division, Ghana Water Company Limited (GWCL), Water Research Institute (WRI), The Ghana Atomic Energy Commission (GAEC), The Ghana Standards Board (GSB), Environmental Protection Agency (EPA), Water Resources Commission (WRC), Private Laboratories, Universities and Research Institutes\(^{18}\).

Table 3 shows the results of the water quality test carried out for the Volta basin. The one for the Black Volta was sampled from the station at Bamboi. The water in the Black Volta is suitable for Agriculture and portable water supply\(^{19}\). However this is also confirmed by the table 3 although the data is obsolete.

\[\text{Figure 29: 30-day Minimum flow at Bamboi}\]

32
Table 4: Summary of Water Quality in the Volta basin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oti River at Sabare (Nov 76 to Feb 78)</th>
<th>White Volta at Daboya (Aug 77 to Feb 78)</th>
<th>Black Volta at Bamboi (Aug 77 to Feb 78)</th>
<th>Lower Volta at Amedeka (Apr 77 to Mar 78)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std dev</td>
<td>mean</td>
<td>std dev</td>
</tr>
<tr>
<td>pH</td>
<td>6.9</td>
<td>0.5</td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Conductivity</td>
<td>280</td>
<td>213</td>
<td>194</td>
<td>156</td>
</tr>
<tr>
<td>Dissolved</td>
<td>9.9</td>
<td>2.4</td>
<td>10.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Oxygen</td>
<td>2.7</td>
<td>1.3</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>BOD</td>
<td>35.3</td>
<td>11.5</td>
<td>42.6</td>
<td>16.5</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>5.4</td>
<td>2.8</td>
<td>13.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Calcium</td>
<td>4.8</td>
<td>2.0</td>
<td>6.8</td>
<td>2.0</td>
</tr>
<tr>
<td>T Hardness</td>
<td>22.9</td>
<td>10.8</td>
<td>30.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Magnesium</td>
<td>4.3</td>
<td>2.2</td>
<td>5.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>1.0</td>
<td>1.5</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Phosphate</td>
<td>0.9</td>
<td>0.4</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Nitrite</td>
<td>0.08</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>Sulphate</td>
<td>5.7</td>
<td>6.6</td>
<td>8.9</td>
<td>10.7</td>
</tr>
</tbody>
</table>

3.5 Groundwater

3.5.1 Groundwater Assessment

Most streams in the Volta basin are ephemeral and dry up by March/April. This makes it extremely difficult to find portable water in most parts of the Basin Systems during the dry season. Groundwater resources then seem to be the most probable way out.

Table 5: Groundwater characteristics in the Volta basin

<table>
<thead>
<tr>
<th>Basin</th>
<th>Runoff Coefficient %</th>
<th>Borehole Yield (m3/h)</th>
<th>Mean Borehole Yields (m3/h)</th>
<th>Specific Capacities (m3/h/m)</th>
<th>Depth to Aquifer (m)</th>
<th>Mean Depth to aquifer (m)</th>
<th>Depth of Boreholes (m)</th>
<th>Mean Depth of Borehole (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Volta</td>
<td>10.8</td>
<td>0.03-24.0</td>
<td>2.1</td>
<td>0.01-21.1</td>
<td>3.7-51.5</td>
<td>18.4</td>
<td>7.4-123.4</td>
<td>24.7</td>
</tr>
<tr>
<td>Black Volta</td>
<td>8.3</td>
<td>0.1-36.0</td>
<td>2.2</td>
<td>0.02-5.28</td>
<td>4.3-82.5</td>
<td>20.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oti</td>
<td>14.8</td>
<td>0.6-36.0</td>
<td>5.2</td>
<td>0.06-10.45</td>
<td>6.0-39.0</td>
<td>20.6</td>
<td>25.0-82.0</td>
<td>32.9</td>
</tr>
<tr>
<td>Lower Volta</td>
<td>17.0</td>
<td>0.02-36.0</td>
<td>5.7</td>
<td>0.05-2.99</td>
<td>3.0-55.0</td>
<td>22.7</td>
<td>21-29.0</td>
<td>44.5</td>
</tr>
</tbody>
</table>

31 Water Audit Update Study, 2012
On the average, the mean annual groundwater recharge of the Volta River system is about 5-12% of annual precipitation in weathered rocks. Only rainfall values exceeding 380mm/annum in these weathered rocks recharge the groundwater system. Figures 30 and 31 show the Groundwater production and groundwater consumption estimated for the Volta basin respectively.

Figure 30: Spatial distribution of groundwater production in m³/y per 9x9 km² cell
3.5.2 Groundwater Quality

Monitoring of groundwater quality is somewhat better than surface water quality due to the fact that the Black Volta is predominantly rural (about 70%) and their domestic demands are satisfied with groundwater. Apart from hardness, groundwater quality seems to be ok as shown in Table 6. The potential problems with groundwater are largely fluoride excesses and iodine deficiencies (i.e. less than 0.005 mg/l).

34 Groundwater Quality in Ghana. WaterAid working document. Published by British Geological Survey

36
Table 6: Summary Groundwater Quality for the Volta Basin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Geologic Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White Volta-Granite (East)</td>
</tr>
<tr>
<td>pH</td>
<td>Range 6.9-9.3 avg. 7.4 Majority have pH 7.0 Alkaline in nature</td>
</tr>
<tr>
<td>Hardness</td>
<td>Generally moderately hard Temporary Hardness</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>High above 100mg/l</td>
</tr>
<tr>
<td>Fluoride</td>
<td>High concentrations detected. Few wells up to 3.8mg/l</td>
</tr>
<tr>
<td>Iron and Manganese</td>
<td>Less than 12% have concentration above 0.3mg/l</td>
</tr>
<tr>
<td>Silica</td>
<td>Range up to 90mg/l</td>
</tr>
<tr>
<td>Nitrate</td>
<td>High concentration found in several wells</td>
</tr>
<tr>
<td>Phosphate</td>
<td>High values detected in several wells</td>
</tr>
</tbody>
</table>

3.6 Limitations of Water Resources Assessment in the Black Volta Basin

3.6.1 Meteorological Stations

Each portion of the sub-basins of the Black Volta in Ghana has at least one meteo. station within 30km radius (shown in Figure 32) covering an average area of about 3700km2. It is evident from the figure that large portions of the basin are not covered.

Figure 32: Hydro and Meteo Stations in the basin key for Ghana’s water resources assessment
3.6.2 **Hydrological stations**

The current hydrological stations in the basin within Ghana are sufficient for general water resources assessment at larger scales. For detailed water analyses for smaller watersheds within the basin there would be the need to install more hydro stations. The key stations for Ghana’s water resources assessment are shown in Table 7.

Table 7: Gauge Stations of Interest to the Black Volta Basin in Ghana

<table>
<thead>
<tr>
<th>STATION</th>
<th>Latitude</th>
<th>Longitude</th>
<th>COUNTRY</th>
<th>RIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dapola</td>
<td>10.570</td>
<td>-2.920</td>
<td>BF</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Lawra</td>
<td>10.630</td>
<td>-2.920</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Noumbiel</td>
<td>9.680</td>
<td>-2.770</td>
<td>BF</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Vonkoro</td>
<td>9.190</td>
<td>-2.710</td>
<td>CI</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Bui</td>
<td>8.281</td>
<td>-2.238</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
<tr>
<td>Bamboi</td>
<td>8.150</td>
<td>-2.030</td>
<td>GH</td>
<td>Black Volta</td>
</tr>
</tbody>
</table>
4. WATER DEMAND IN THE BASIN

Water use in the basin is mostly for agriculture, domestic purposes, fishing, livestock, the environment and currently mining (legal and galamsay).

Portable water supply to the populace in the basin within Ghana is done largely by the GWCL for urban coverage and the Community Water and Sanitation Agency (CWSA) for rural water supply. The GWCL operates mainly by using surface water resources and sometimes wells and boreholes. It has 208 pipe borne water systems, 8000 boreholes with hand pumps, 10,000 hand-dug wells to supply water to urban towns including Wa Municipality. CWSA uses mostly the small town water supply system with a mechanized borehole often as the source of supply.

4.1 Current and Projected Water demands and its potential Impacts

4.1.1 Agriculture water demand

Most farmers in the Black Volta basin in Ghana are peasant farmers who do compound farming. Irrigation is largely done using small reservoirs hence its water demand is met by small reservoirs. The only large irrigation scheme in the basin within Ghana is the Bui irrigation which has an estimated water use rate of 20,000 m3/ha/year and a projected irrigable land of about 800ha by 2030 under cultivation.

Table 8: Projected irrigable lands for rice cultivation as per country in the Volta Basin

<table>
<thead>
<tr>
<th>Country</th>
<th>Sub-basin</th>
<th>Irrigation site</th>
<th>Irrigable land areas and projections (ha)</th>
<th>Water use rate m3/ha/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>Oti-Pendjari</td>
<td>Porga</td>
<td>10,503 10,503 10,503 10,503 10,503</td>
<td>15,000</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Black Volta</td>
<td>Samendeni</td>
<td>2,500 5,000 7,500 8,900 10,500</td>
<td>15,850</td>
</tr>
<tr>
<td></td>
<td>White Volta</td>
<td>Sourou</td>
<td>3,360 3,710 4,090 4,520 4,990</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bagre</td>
<td>3,380 7,680 8,980 10,280 11,580</td>
<td>20,000</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>Black Volta</td>
<td>Nord-Zanzan</td>
<td>138 16,781 17,292 17,818 18,361</td>
<td>15,000</td>
</tr>
<tr>
<td>Ghana</td>
<td>White Volta</td>
<td>Tono</td>
<td>1,432 1,699 1,966 2,233 2,500</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>Black Volta</td>
<td>Vea</td>
<td>850 887 925 962 1,000</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bui</td>
<td>50 600 700 750 800</td>
<td>20,000</td>
</tr>
<tr>
<td>Mali</td>
<td>Black Volta</td>
<td>Sourou</td>
<td>9,000 10,750 11,050 11,175 11,300</td>
<td>18,000</td>
</tr>
<tr>
<td>Togo</td>
<td>Oti</td>
<td>Dapaong</td>
<td>5,056 6,080 7,389 9,500 12,400</td>
<td>18,000</td>
</tr>
</tbody>
</table>

36 ADOM (1997). GHANA WATER RESOURCES MANAGEMENT STUDY. INFORMATION BUILDING BLOCK. MAIN REPORT – URBAN WATER SUPPLY

37 WATER AUDIT UPDATE STUDY, 2012
4.1.2 Crop water requirements

4.1.2.1 Rainfed Farming
Rainfed farming affects runoff generation in the basin. If lands under rainfed farming increase, runoff decreases. This is therefore already inherent in the river flows since the runoff is excess precipitation after infiltration and evapo-transpiration while taking into account changes in storage.

4.1.2.2 Irrigated farming
As explained in the previous section, apart from Bui, large irrigation schemes do not exist currently and by the year 2030 in the basin. Medium scale irrigation schemes are served by small reservoirs which are considered as demands in this study. Hence satisfying the demands of small reservoirs will satisfy the demands of all these irrigation schemes.

Some communities engage in groundwater for irrigation. However these are very few and survey conducted in the present study shows that the land size under irrigation is mostly under 0.4ha per community of the GWI project area but also for the basin within the Upper West region in general.

Table 9: Cropped area for major crops in the Upper West Region of Ghana – 2011 in Hectares\(^{38}\)

<table>
<thead>
<tr>
<th>DISTRICTS</th>
<th>MAIZE</th>
<th>RICE</th>
<th>MILLET</th>
<th>SORGHUM</th>
<th>YAM</th>
<th>G/NUTS</th>
<th>COWPEA</th>
<th>SOYABEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wa West</td>
<td>5440</td>
<td>1523</td>
<td>6838</td>
<td>6462</td>
<td>5027</td>
<td>19030</td>
<td>4608</td>
<td>4460</td>
</tr>
<tr>
<td>Wa East</td>
<td>8730</td>
<td>788</td>
<td>6476</td>
<td>3920</td>
<td>5294</td>
<td>12495</td>
<td>5292</td>
<td>4720</td>
</tr>
<tr>
<td>Wa Municipal</td>
<td>7580</td>
<td>462</td>
<td>6600</td>
<td>6108</td>
<td>4641</td>
<td>15320</td>
<td>4296</td>
<td>4730</td>
</tr>
<tr>
<td>Lawra</td>
<td>5380</td>
<td>116</td>
<td>12190</td>
<td>39496</td>
<td>0</td>
<td>15790</td>
<td>4680</td>
<td>188</td>
</tr>
<tr>
<td>Sissala East</td>
<td>10560</td>
<td>206</td>
<td>4343</td>
<td>985</td>
<td>2651</td>
<td>10980</td>
<td>10368</td>
<td>157</td>
</tr>
<tr>
<td>Sissala West</td>
<td>9340</td>
<td>378</td>
<td>4619</td>
<td>8492</td>
<td>2580</td>
<td>7850</td>
<td>11100</td>
<td>170</td>
</tr>
<tr>
<td>Jirapa-Lambussie</td>
<td>7420</td>
<td>1095</td>
<td>13754</td>
<td>17853</td>
<td>1275</td>
<td>21320</td>
<td>11960</td>
<td>399</td>
</tr>
<tr>
<td>Nadowli</td>
<td>12900</td>
<td>263</td>
<td>9086</td>
<td>18123</td>
<td>4834</td>
<td>29820</td>
<td>23652</td>
<td>806</td>
</tr>
<tr>
<td>REGIONAL TOTAL</td>
<td>67350</td>
<td>4829</td>
<td>63906</td>
<td>101439</td>
<td>26302</td>
<td>132605</td>
<td>75956</td>
<td>15630</td>
</tr>
</tbody>
</table>

\(^{38}\) SOURCE: STATISTICS, RESEARCH AND INFO. DIRECTORATE (SRID), MIN. OF FOOD & AGRIC., JAN, 2012
Table 10: Rainfall and Length of Growing seasons\(^{39}\)

<table>
<thead>
<tr>
<th>Agro-ecological zone</th>
<th>Mean annual rain (mm)</th>
<th>Growing period (days)</th>
<th>Major season</th>
<th>Minor season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rain forest</td>
<td>2,200</td>
<td>150-160</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>1,500</td>
<td>150-160</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Transitional</td>
<td>1,300</td>
<td>200-220</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Coastal</td>
<td>800</td>
<td>100-110</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Guinea savanna</td>
<td>1,100</td>
<td>180-200</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Sudan savanna</td>
<td>1,000</td>
<td>150-160</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3 Livestock Watering

Livestock water from the main Black Volta river and its tributaries, and small reservoirs and dugouts. This usually serves as water source for large ruminants including cattle. However, small ruminants like goat and sheep often source their water needs from dugouts, wells and boreholes for which reason a trough is built at the water facility. Data collected by MOFA for 2010 shows that goat is the predominant livestock kept in the Upper West region. Herds of animals in the Upper West region is over 600,000. A detail of the livestock population and the water requirement is given in Tables 11 and 12.

Table 11: Livestock count in the Upper West Region\(^{40}\)

<table>
<thead>
<tr>
<th>District</th>
<th>Cattle</th>
<th>Sheep</th>
<th>Goats</th>
<th>Swine</th>
<th>Donkeys</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jirapa-Lambussie</td>
<td>20442</td>
<td>18486</td>
<td>43173</td>
<td>20318</td>
<td>1949</td>
<td>1</td>
</tr>
<tr>
<td>Lawra-Nandom</td>
<td>11696</td>
<td>13528</td>
<td>31201</td>
<td>14761</td>
<td>341</td>
<td>1</td>
</tr>
<tr>
<td>Nadowli</td>
<td>11539</td>
<td>15666</td>
<td>41295</td>
<td>12694</td>
<td>124</td>
<td>4</td>
</tr>
<tr>
<td>Sissala East</td>
<td>22459</td>
<td>8481</td>
<td>15055</td>
<td>487</td>
<td>726</td>
<td>7</td>
</tr>
<tr>
<td>Sissala West</td>
<td>15829</td>
<td>9069</td>
<td>14222</td>
<td>2390</td>
<td>1558</td>
<td>2</td>
</tr>
<tr>
<td>Wa East</td>
<td>14502</td>
<td>4383</td>
<td>13580</td>
<td>1829</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Wa Municipal</td>
<td>7100</td>
<td>9368</td>
<td>15455</td>
<td>3418</td>
<td>385</td>
<td>230</td>
</tr>
<tr>
<td>Wa West</td>
<td>18601</td>
<td>17156</td>
<td>34941</td>
<td>14085</td>
<td>378</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>122168</td>
<td>96137</td>
<td>208922</td>
<td>69982</td>
<td>5481</td>
<td>246</td>
</tr>
</tbody>
</table>

“Tropical Livestock Unit” (TLU) has been developed by the Food and Agricultural Organization to harmonize and standardize the different compositions\(^{41}\). The Camel was used as the basis for this assessment and all other livestock compared to camel. 1 TLU = Camel 1.0.

\(^{39}\) VOLTA BASIN PROFILE, BASELINE REPORT NO. 8, VOLTA RIVER BASIN: ENHANCING AGRICULTURE WATER PRODUCTIVITY THROUGH STRATEGIC RESEARCH (2005)

\(^{40}\) SOURCE: STATISTICS, RESEARCH AND INFO. DIRECTORATE (SRID), MIN. OF FOOD & AGRIC.- JAN, 2012

\(^{41}\) HTTP://WWW.FAO.ORG/AG/AGAINFO/PROGRAMMES/EN/LEAD/TOOLBOX/Mixed1/TLU.HTM
Assuming a demand of 35 l/TLU/day, an annual water demand has been estimated for the livestock in Table 11 for the Upper West Region. The annual growth rate for livestock has been estimated as 2.3% per annum42.

<table>
<thead>
<tr>
<th>Cattle</th>
<th>Sheep</th>
<th>Goats</th>
<th>Swine</th>
<th>Donkeys</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Herds</td>
<td>122168</td>
<td>96137</td>
<td>208922</td>
<td>69982</td>
<td>5481</td>
</tr>
<tr>
<td>TLU/Livestock</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>85518</td>
<td>9614</td>
<td>20892</td>
<td>13996</td>
<td>2192</td>
</tr>
<tr>
<td>Water demand (Mm3)/year</td>
<td>1.092</td>
<td>0.123</td>
<td>0.267</td>
<td>0.179</td>
<td>0.028</td>
</tr>
</tbody>
</table>

4.1.4 Domestic water demand

Rural domestic water demand is estimated as 50l/c/day while that of urban population in the basin is estimated at 120 l/c/day.

4.1.5 Industrial demand (Mining)

A range of industries are located in the Black Volta Basin including those in the mining sector. However, viable data on their water abstractions could not be assessed. This should be pursued in subsequent studies since mining activities seems to be on the rise in the basin.

4.1.6 Small Reservoirs and Dugouts

A number of small reservoirs are dotted in the Volta basin especially in the White Volta basin. This is very much utilized in the White Volta unlike in the Black Volta. The distribution of reservoirs in the Black Volta basin is given in Figure 33. The total annual water demand is estimated at 102Mm3 for the entire Volta basin. In the Upper West Region of Ghana in the Black Volta basin alone, the annual water demand for small reservoirs was found to be 4.2Mm3 representing about 4% with respect to small reservoir demand for the entire Volta basin.

42 Volta Water Audit Study, 2012
4.1.7 Environment

Environmental flow is considered to be the minimum flow required to sustain habitat in rivers. It is considered in this study as the 25 percentile flow since detailed study has not been carried out yet on environmental flow requirement for the basin. In previous studies it was assumed to be 0.05 m³/s.

43 WATER AUDIT UPDATE, 2012
44
5. CHALLENGES REGARDING USE OF WATER IN THE BLACK VOLTA BASIN OF GHANA

5.1 Conditions of Dams, Dugouts and Boreholes

There are about 1630 boreholes in the Ghana portion of the Black Volta basin. These are shown in Figure 34. Distribution in the sub-basins is given in Table 13.

Figure 34: Boreholes within the Black Volta basin in Ghana

44 DATA FROM THE WRC HAP PROJECT (2011) WAS USED TO PRODUCE THE MAP
Most communities in the Black Volta are supplied with boreholes for their domestic water needs. Unfortunately minor routine maintenance and operations such as chlorination is not carried out. Whereas management mechanisms are operational through monthly levy and contributions from members who patronize the facility for the purpose of maintenance, other communities have adopted the pay as you fetch approach. The former was found to be faced with the challenge of effective collection and thus less sustainable.

Some communities have been provided with Small Reservoirs or Dugouts. However, no intensive large scale irrigation is carried out downstream of these facilities with the exception of the one in Bui. Most of these dugouts also dry up in the dry season when it is needed most for dry season vegetable gardening and livestock watering. This is primarily due to the fact that they are silted or have seepage problems. Regular desilting is not carried out by community members because they claim it is difficult to do when even some of the communities have been provided with the tools to be used by organizations like GWI.

5.2 Cropping Patterns in Sub-catchments

Crops grown are mostly cereals like Maize, Sorghum and rice in the rainy season and mostly vegetables including pepper; tomatoes and onions in the dry season. The yields of these crops are low because of poor soil fertility. Women are most often given poor lands in terms of soil fertility to farm on. This discrimination does not promote gender equity and poverty alleviation among women and household food security, in general.

The rainfall pattern is becoming more and more erratic and poses a major challenge in the basin as most farmers do rain-fed farming. This contributes to the low yields especially for the early maize and millet. There is the need to therefore shift towards efficient and productive irrigation where farmers could make up for their losses.

Crop production in the Upper West region seems to be increasing. However, there is no corresponding increase in yields. So there is intensification of farming without necessarily improving productivity. This does not encourage the young folks in the communities to engage in active farming hence leads to migration of the youth to big cities in the countries for non-existent jobs.

Figures 35 and 36 show the yields and annual production of crops from the year 2005 to 2011 for the Upper West region respectively.
5.3 Landuse and management of Sub-catchments

Traditional roles of men as heads of family put them at a vantage position with regards to access to productive resources especially land for farming. Lands are managed by the Tindanis/Tindanba. Access to lands for farming is authorized by these family heads. By the cultural setting, men mostly take the very arable lands which are also closer to water sources for farming leaving women with very little choice but the lands with low soil fertility. These cultural

45 SOURCE OF DATA USED: STATISTICS, RESEARCH AND INFO. DIRECTORATE (SRID), MIN. OF FOOD & AGRIC.- JAN, 2012
settings make women disadvantaged and will have to be looked at for necessary adjustments. This calls for advocacy and gender mainstreaming.

5.4 Farm Operations and Maintenance Culture
Application of water in farms is mostly done with buckets and ropes or watering cans. This is somewhat inefficient and tiresome when large areas of lands are to be irrigated. Those who use water pumps also complain of high cost of fuel to run their pumps. Providing solar pumps with tight security could be an option out of this problem. GWI, CWSA and other organizations have introduced solar pumps to run community water supply systems which seem to be efficient. This could therefore be looked at in more detail through benefit-cost analysis.

Water use in communities in managed by a committee mostly the WATSAN or WUA. This happens in communities with small reservoirs most often. The committee allocates water on a rotational basis and is in charge of the maintenance of the canals and irrigations systems. They receive some support from GIDA and MOFA and from other organisations such as GWI and SARI (AGRA).

5.5 Training and Advocacy on rainfed farming and irrigation
There is a need to train the youth in most communities in non-farm based income generating activities or trades to supplement the income they generate from farming. This is needed to ensure that they do not migrate to cities which mostly ends up in hardships.

Productivity of irrigation or farming is low and so is water application. With poor soils and intensified agriculture low yields seems to be the only result. Farmers need to be educated on sustainable irrigation technologies and farming practices which would improve their crop yields. This cannot stop there! There is the need to train them also on micro-financing so they can be more productive and shift gradually from subsistence to commercial farming and livestock rearing.

Access to Markets is not a major problem since markets for food stuff and livestock are within 5km distance from most communities. In other communities farmers have to either walk or ride bicycles/motors over distances of at least 25km to sell their farm produce. There is a need to engage farmers in innovative ways of marketing their goods to ensure market queens do not monopolise the market as is currently practiced.

Good book or record keeping is essential for farmers so they can track their progress. Currently this is not done so it is difficult for farmers to quantify their productions and profit margins. They need to be taught how to carry out basic cost-benefit analysis and proper book keeping.
5.6 Transboundary Issues

Communities in the basin see communities in neighbouring countries as their relatives since they inter-marry and trade with them. Goods and services are easily sent across the Black Volta. This could be good because it opens up market but worrying because customs/duties could be evaded. Plates 1-2 show examples of goods being sent from Burkina to Ghana.

Plate 1: Transport of Goods across borders
The main transboundary issue in the basin has to do with the nomads also known as the “fulanis” who cause a lot of problems for the indigenes. Some of the issues raised include:
- Destruction of crops by their livestock
- Use of limited quantity of water in dugouts meant for the livestock of the indigenes
- Illegal possession and occupancies of lands meant for indigenes
- Raping of women
- Arm robbery
- Etc

It is purported that, these fulani’s are hosted by some chiefs who benefit directly from them by either getting some herds of cattle or employing the Fulani to work for them. The problem with
the latter is that, in that case, the herds of cattle belong to an indigene which makes the social mix complex.

Another transboundary issue to be addressed in the basin is the issue of flooding where upstream releases from dams is purported to cause flooding downstream. This has to be studied critically with some hydrological (flood) models.

The basin platform and subsequently the basin board to be formed will have to find a novel way to address this pressing issue taking into account existing traditional institutions and norms.
6. SUSTAINABLE WATER ALLOCATION

6.1 Water demand and allocation for various uses

The Water Allocation model developed for the update of the Volta Water Audit Update in 2012 was adapted in this study. The parameterization was the same, except that demands were disaggregated for the Black Volta basin in the Upper West region of Ghana. This was the focus for the modeling since that was the area where GWI was concentrating its’ core activities. This was done due to the fact that the smaller watersheds in the Upper West Region of the Black Volta basin were ungauged and therefore difficult to calibrate. A scaling down approach was therefore seen to be the best option. Hence the Dapola, Noumbiel, Vonkoro and Bui subbasins of the Black Volta basin were used for the scaling down.

A brief description of the parameterization and scenarios on climate change is given in the next section however, a more detail one is described in the Volta Water Audit Update (2012) report.

Basically the Bui hydropower requirement, Environmental flow and four consumptive uses were considered in the model. The consumptive uses included:
- Domestic water use for urban populations
- Small Reservoirs water requirements
- Livestock Water requirements
- Irrigation

However, in the Upper West region, no major irrigation scheme apart from Bui was mentioned during the field visit and from the literature reviewed. Most of the irrigation done is either through small reservoirs hence satisfying the water requirements of small reservoirs will invariably satisfy those demands.

Livestock also water sometimes from small reservoirs/dugouts in addition to boreholes and rivers/streams. The model was constructed with this in mind.

6.1.1 Parameterisation and Scenarios used in the WEAP Model for the Upper West Region

The basin considered was only the portion of the Black Volta Basin in Ghana. Hence flows considered are flows from only the Ghana portions of the catchment.

The model was developed using climate (Rainfall, relative humidity, net evaporation, temperature, cloudiness fraction) hydrological (monthly stream flow) and demographic data sets including population and landuse.

Demands have been shown as red dots, catchments as green dots and groundwater objects as green box. Figures 37 and 38 shows the various demands considered in the WEAP model developed.
Figure 37: The Schematic view of the WEAP Model for the Black Volta basin within the UWR of Ghana
Since the model was adapted from the Volta Water Audit Update study, the climate change scenarios were maintained. 3 scenarios were developed in that study. Reference, Wetter climate and Drier climate scenarios. A temperature rise of $1^\circ C$ in the Volta Basin was considered over the simulation period.

For rainfall, three scenarios were considered:
- The “reference” situation where there was no change in precipitation levels relative to historical trends
- The “wetter” scenario where there is increase in precipitation relative to historical trends
- The “drier” scenario for which precipitation decreases relative to historical trends
These rainfall scenarios were achieved by shifting rainfall grids by 1 degree.

In the model, the increasing trends of water demands for domestic consumption coupled with population expansion in the basin were taken into account. Livestock and irrigation water demands were kept constant throughout the simulation period. This is how water has been accessed for current and future needs. Figures 39-42 show precipitation and runoff/infiltration in sub-basins within Ghana.

Figure 38: The Schematic view of UWR WEAP Model in Google earth
Figure 39: Annual Precipitation in the Black Volta subbasins within Ghana – Reference condition

Figure 40: Monthly Average Precipitation in the Black Volta basins within Ghana – Reference condition
6.1.2 Agriculture (Irrigation)

Agriculture in the Upper West region is mainly rainfed. However in the dry season some farmers engage in dry season vegetable gardening. This is mostly done with small reservoirs and currently also boreholes. There are few farmers who do river irrigation at the moment.
In the model since the irrigation demands apart from Bui which requires 20,000 m³/ha/annum, small-scale irrigation demands are met with small reservoirs. However, they were included so that stakeholders could build different scenarios and see how water availability to other users would be affected. Currently less than 2% of the irrigation area is put into use even though most of the reservoirs have been sited to meet 100% of the irrigation demands if all potential areas are cultivated in addition to making provision for livestock and other domestic uses such as dish and cloth washing, fishing and for construction purposes.

6.1.3 Domestic purposes

Most parts of the basin within the region are rural with domestic water requirements being met with groundwater resources. The current yields of boreholes is around 2.2 m³/h on the average. Urban water demands considered in the study include Jirapa, Lawra and Wa Municipal. The demands are given in Table 14.

<table>
<thead>
<tr>
<th>District</th>
<th>2010 Population</th>
<th>% of Urban Population</th>
<th>Urban Population</th>
<th>Annual Water demand*(Mm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wa Municipal</td>
<td>107,214</td>
<td>30%</td>
<td>32164</td>
<td>1.41</td>
</tr>
<tr>
<td>Lawra</td>
<td>100,929</td>
<td>14%</td>
<td>14130</td>
<td>0.62</td>
</tr>
<tr>
<td>Jirapa</td>
<td>88,402</td>
<td>5%</td>
<td>4420</td>
<td>0.19</td>
</tr>
</tbody>
</table>

* demand including losses

The supply requirement for domestic water use in Wa is given in Figure 43 as an example of the variation of water requirements over the period of simulation.

![Figure 43: Water Supply requirement at Wa City](image-url)
It is shown in Figure 44, that water in the Ghana portion of the basin can meet all demands with the exception of the Bui hydropower which is largely dependent on flows outside Ghana. The hydropower plant is also a critical resource for the country. This means that fostering good relations with riparian countries is a necessity.

6.1.4 Fishing

Fishing is considered to be a non-consumptive use although it is highly dependent on water levels in streams, rivers and reservoirs/dugouts. It was however not considered in the model. A current study has been carried out in the basin but the results were not available at the time of finalising this report.

6.1.5 Livestock

Livestock watering in the basin is done using either dugouts or small reservoirs. Occasionally rivers, streams and boreholes are used. Livestock watering in the model is considered to be from the river. Hence if this is unmet in the model, practical they will be met by the small reservoirs and dugouts. However Livestock requirements are met. This means that there is a high potential to increase livestock herds.

6.1.6 The environment

Environmental flow requirements are met however this is just based on quantity and not quality as shown in Figure 44.

6.2 Possible Impacts of the Bui dam on water resources in the basin

The Bui dam which is due to be operational in 2014 is a key water infrastructure for the country. While filling the dam, adjacent lands will get flooded and lead to a loss of biodiversity. However, the presence of the dam could regulate flow downstream and also reduce flood risk.
Upstream advantage of the dam is minimal unless water could be pumped upstream for domestic water supply purposes or irrigation.
7. WATER GOVERNANCE IN THE BASIN

7.1 Current state of water Governance in the basin including trans-boundary issues

Water is a vital resource which plays a major role in the developmental agenda of all the riparian countries of the Volta basin. There has been over exploitation and pollution of water resources base in the basin due to uncoordinated management and lack of water governance. Among the competing uses of water in each riparian state are irrigation, fishery, domestic water supply and livestock watering. There also exist competition over water by upstream and downstream countries notably among them is that between Ghana and Burkina Faso. In order to eradicate suspicion and build trust among the states sharing the common resource, it is important to work towards establishment of a coordinated effort of water management and institutionalization of pragmatic governance systems.

Governance to say is the most influential factor, as far as organizing framework for decision making is concerned. In order to achieve policy harmonization to guide effective coordination, a holistic/integrated approach to water management that views the basin as a unit is pre-requisite. If water governance is improved in the basin and integrated water resources management is adapted and implemented, conflicts over water resources can be curbed, if not alleviated or resolved. Utilization of collaborative and participatory mechanisms will help the riparian countries of the basin achieve their development goals in a sustainable way. It is in line with this that the Volta Basin Authority (VBA) was established in 2006 and based in Ouagadougou, Burkina Faso. Among the mandates of the VBA are to "promote and reinforce cooperation among the six countries in the management and development of the basin resources; and to harmonize national policies on integrated water resources management". Also among its roles is to "coordinate studies and research in the basin for the development of the water resources and to reinforce a system for the collection, processing, storage and dissemination of data for scientific research and planning"46.

Over the years, riparian countries in their bid to harmonize the management of water resources of the basin have also created institutions which are charged with the responsibility of ensuring effective management of water and land resources. In order to achieve this, local and national level integration is of paramount importance not forgetting the critical role of inter-sectoral coordination47. At the national level, riparian countries have enacted laws that address environmental impacts and also integrate local communities in the process of water sector reforms. Shown in Table 15 are the various actions in terms of legislative reforms that are geared towards improving water governance at the country level in the basin.

46 AFRICA RESEARCH BULLETIN, VOLUME 43, ISSUE 7, 2006 (PAGE 17034A)
47 ANDAH AND GICHIKI, 2005
Table 15: Some Important Legislative Reforms in the Basin

<table>
<thead>
<tr>
<th>Riparian Country</th>
<th>Legislative Reform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Act No. 005/97/ADP.</td>
</tr>
<tr>
<td></td>
<td>Act No. 0014/96/ADP of 23 May 1996.</td>
</tr>
<tr>
<td>Ghana</td>
<td>Act 46 of 1961 established VRA</td>
</tr>
<tr>
<td></td>
<td>Act 462 of 1993 established DAs</td>
</tr>
<tr>
<td></td>
<td>Act 490 of 1994 established EPA</td>
</tr>
<tr>
<td></td>
<td>Act 522 of 1996 established WRC</td>
</tr>
<tr>
<td></td>
<td>No. 95-447/PM-RM.</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>Law 98-755</td>
</tr>
<tr>
<td>Benin</td>
<td>Decree No. 82-435; December 30, 1982</td>
</tr>
<tr>
<td></td>
<td>Law No. 87-016</td>
</tr>
<tr>
<td></td>
<td>Law No. 98-030; February 12, 1999</td>
</tr>
</tbody>
</table>

Worthy of note, are also environmental concerns of loss of biodiversity (Figure 45), river pollution, reduction of fisheries resources, flooding and groundwater resources depletion\(^{48}\). These are as a result of biophysical and socio-economic factors. The biophysical factors include but not limited to spatial and temporal distribution of rainfall, drought and relief. The socio-economic factors consist of population pressure, unsustainable cultivation practices, deforestation, overgrazing, bushfires, improper use of agro-chemicals, poor mining practices, rapid depletion of soil nutrients without replenishment, lack of security in land tenure, migration and poverty. These issues are trans-boundary in nature and need to be taken into consideration if effective and sustainable water management is to be achieved in the basin.

Transhumance as stated in previous chapters and defined as the movement of cattle, sheep, and people across national boundaries, is common within the basin. This phenomenon has increased as a result of dam construction and new water and land management structures\(^{49}\) usually accompanied by reckless destruction of vegetation and watering sources. The situation also creates social tension and disruption of socioeconomic activities, sometimes leading to conflicts.

\(^{48}\) **Anah and Gichuki, 2005**

\(^{49}\) **Youkmana et al., 2006**
7.2 Stakeholders involved in Water Resources Management

The main stakeholders involved in water resource management of the basin are the riparian countries. The riparian countries collaborate through the VBA Platform. This platform was borne out of series of consultations and agreement between all the riparian countries51. Since 2006, VBA has been the body spearheading the management of the Volta Basin. At the national levels, the countries have institutions that are mandated to ensure the effective management of water resources. In Ghana for instance, the Water Resources Commission which was established by Act 522 of Ghana’s Parliament in 1996 is the main body mandated to regulate and manage the country’s water resources and to coordinate government policies in relation to them. This body works hand-in-hand with research institutions such as CSIR-WRI, the HSD and GMet which also by Acts of parliament have been mandated to carry out focus led research in the area of water resources. Notably, similar institutions of state operate in the riparian countries including the Directorate General of Water Resources in Burkina Faso.

50 Andah and Gichuki, 2005
51 Ghana IWRM Plan, 2012
In the Black Volta basin in Ghana the activities of these organization is somewhat uncoordinated due to the absence of a platform for discussions and active engagements among these organizations.

Non-governmental organizations (NGOs), the private sector, research institutions and development partners however also play a significant role in the management of the basin resources. The GLOWA Volta project and PAGEV are some of the projects that have come about as a result of collaboration between riparian states and development partners. Mentioned could also be made of the Volta River research project, Volta Basin research project and ADAPT Volta project all geared towards improving water resources in the basin. At the local level, community members who are the end users of all water policies need also to be acknowledged.

7.3 Platforms on Integrated Watershed Management (IWM)

As far as IWM in the entire Volta basin is concerned, there have been a lot of efforts in rolling out platforms where issues pertaining to the management of water resources are dealt with. One of such platforms was the Volta water governance project (PAGEV) which operated from 2004-2007 (phase I) and continued until about 2011 with the second phase. This project was sponsored by IUCN in collaboration with Global Water Partnership (GWP) with the aim to improving water governance in the White Volta basin with particular focus on Ghana and Burkina Faso. The processes of the project accelerated the establishment of platforms across the border of the two countries, fostering consultations and joint planning. The PAGEV complemented the GEF supported Volta Basin Land and Water Management Programme, (GEF-Volta) involving all the six riparian countries, that aims to support coordination efforts in the eventual management framework for the Volta River Basin. Another platform that has ensured the promotion of IWM is the GLOWA Volta project which was funded by the German Federal Ministry of Education and Research. The GLOWA-Volta initiative began the process of developing a scientifically sound Decision Support System (DSS) for the assessment, sustainable use, and development of the Volta Basin’s water resources. This project is implemented in collaboration with established state institutions, such as the WRC of Ghana, within the White Volta Basin, during the period 2004 – 2006. The project was particularly seen as a way of generating and disseminating scientific information between Ghana and Burkina Faso and by so doing facilitating decision making on the management of the shared water resources.

However, in the Black Volta Basin there is no active platform for IWRM. GWI through CARE and CRS established a platform for Water Management but unfortunately it became a WASH platform. It was very active at the beginning but seems to have died off. It would be good to revive this platform and see how to broaden its scope within the proposed IWRM strategy to be implemented.

52 Youkhana et al., 2005
53 Andah and Gichuki, 2005
54 IUCN, 2003
55 WRC, 2004
56 Van Edig et al., 2001
7.4 Role of Institutions in fostering sustainable IWRM in the basin

By regulation, mandated water related institutions like the WRC, EPA, CWSA, GWCL, GIDA, MOFA, NADMO, NGOs and other organisations should enforce their policies regarding water resources management. State institutions together with development partners should work very closely with basin inhabitants. Integrating the views and opinions of end users during the planning and implementations phase of water resource planning will send signals of ownership and hence the sustainability of interventions. The WRC is already doing very well in this regard and needs to look critically at the western corridor management of shared waters. GWI could therefore assist WRC to carry out its mandate as it has already started doing.

7.5 Integration of GWI interventions into the National IWRM strategic framework

7.5.1 Integrating GWI Interventions into National IWRM strategic framework – Opportunities and Threats

The WRC is the national institution mandated to regulate and manage water resources in the country and to coordinate government policies in relation to them. For all practical purposes WRC is yet to initiate on the ground, processes towards creation of a management structure to coordinate water related issues in the Black Volta basin. To manage effectively water resources in the basin and to respond to current priorities, it is important to adopt a holistic approach to water resources management and development. One approach that has gained recognition worldwide is Integrated Water Resources Management (IWRM), which has been adopted by WRC and used to develop action plans for basins where management structures have been established including the Densu and White Volta basins. This way, the GWI could assist WRC while playing her ‘role’ and to draw lessons from the IWRM processes in the field worth sharing with WRC.

Since the inception of GWI in the year 2008 in the Black Volta basin, interventions have been implemented in communities that do not derive roots from any national framework for the said basin. It is imperative therefore, to initiate integrated water resources management processes in strong collaboration with WRC so as to buttress basis for the interventions being delivered in the project area while ensuring feedbacks towards policy change.

While recognizing that GWI is a project with specific life span, association with WRC will seek to provide mechanisms for sustaining the interventions. Thus formalizing the relationship with the national institution is paramount in order to set pathways for influence and advocacy for practical solutions in the water and related sectors.

It is worth to note that financing of water resources development and management goes beyond the means of central government. The need to mobilize new sources of finance is pre-requisite

CARIUS ET AL., 2004
towards achievement of expectations of vulnerable communities. Further, integrated management of water resources will be facilitated and enhanced if appropriate partnerships are developed among stakeholders, and capacity built to enable them to function effectively.

To ensure sustainable development of these finite resources, water resources management should be considered within the context of the following two main areas:

- Conservation of water resources to sustain quality and availability, health of the people and to guarantee the integrity of the environment.
- Regulation and control of water use and waste disposal, to stay within the natural capacity of the water resource base, which must necessarily maintain its regeneration and self-purification characteristics. Advocacy could help in this regard.

The implementation of IWRM should be geared towards ensuring sustainability of water resource in the basin and this could effectively be achieved by adopting the following measures:

- Strengthening the regulatory and institutional framework for managing and protecting water resources for water security and enhancing resilience to climate change
- Enhancing public awareness and interest in water resource management issues
- Improving access to water resources knowledge base to facilitate water resources planning and decision making

A SWOT analysis based on an IWRM framework has been carried out for GWI in Wa. The Strengths(S) and Weaknesses(W) which are based on internal factors and the Opportunities(O) and Threats(T) which are also due to external factors for GWI is presented in Table 16. GWI has to build upon its strengths while minimising weaknesses and also seize its opportunities and reduce threats by careful and wholistic planning.
Table 16: A SWOT analysis of GWI in Wa

<table>
<thead>
<tr>
<th>STRENGTHS</th>
<th>WEAKNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>● GWI has Young, energetic and professional employees who are willing to take up new challenges and be innovative.</td>
<td>● Lack of coordination and linkages with other key stakeholders in the basin and even within the consortium.</td>
</tr>
<tr>
<td>● GWI is established in the Upper West region of Ghana and has created a strong community commitment and ownership of its previous projects so it will be easy for communities to identify/associate with them.</td>
<td>● Bureaucratic processes which sometimes delay implementation and carrying out of planned activities.</td>
</tr>
<tr>
<td>● GWI has helped some communities to develop IWRM plans which could serve as a useful background document for the IWRM Platform.</td>
<td>● GWI has a lean project staff.</td>
</tr>
<tr>
<td>● GWI has carried out a number of studies and interventions in the basin so it knows the major problems “in-and-out”.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPPORTUNITIES</th>
<th>THREATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>● GWI has some financial support from the Howard G. Buffet Foundation to carry out some IWRM interventions in the basin.</td>
<td>● There are a number of communities which could be involved in the project but the problem is the limited amount of funds available. Criteria for selecting some communities among the lot could be a challenge.</td>
</tr>
<tr>
<td>● Innovative platforms have been setup by the CPWF Phase 2 – V2 project. This could serve as a learning alliance for both GWI and the CPWF project.</td>
<td>● Effective cooperation/collaboration with other key institutions/stakeholders could be a long process which has to be pursued vigorously.</td>
</tr>
</tbody>
</table>
8. VISION FOR THE SUSTAINABLE DEVELOPMENT OF THE BLACK VOLTA BASIN

8.1 Increasing food security
Agriculture practices in the Black Volta Basin vary from the transitional zone to the interior savannah. As mentioned in previous sections, agriculture is dominated by smallholder farms characterized by low input technologies and low yields and outputs. The major annual crops are classified as cereals, root crops, pulses and nuts and vegetables. The major cereals are maize, millet and sorghum. Maize is grown throughout the country with about 63% of food farmers involved in its cultivation. However, millet and sorghum are mainly grown in the savanna zone. Rice is a cash crop of importance especially in the Northern and Upper West Regions. Cassava is grown almost everywhere in the basin, however, in small scale in parts of the Upper West and Northern Regions. The cultivation of yam is concentrated mainly in the transition and Guinea Savanna zones. Groundnuts, Bambara nut and Beans are largely cultivated in the Upper West and Northern regions.

In order to ensure food security and improved livelihood of the inhabitants, measures should be introduced to ensure the judicious use of the available water resources. Surface water resources can also be developed employing strict sector policies so as not to deplete the resource base of the basin. In so doing, farmers will access water for their farming activities which will culminate into livelihood improvement.

Irrigation schemes developed around small reservoirs have not been utilized at all in the basin. Less than 2% of planned irrigable areas are under actual irrigation\(^5\). This situation has to change with the major setbacks resolved.

8.2 Immediate “next” steps

8.2.1 IWM Plans
GWI partners (CARE, CRS and IUCN) have assisted some communities to draw strategic IWRM Plans. These plans have been reviewed and realised to be too ambitious. It is therefore necessary to review these plans with the communities and draw new plans and road maps that are easily implementable.

The plans drawn could be the basis for a master plan for the basin. It would be expedient to start from the 3 upstream basins namely Dapola, Noumbiel and Vonkoro. GWI is already well known in these basins and so could give a smooth start of planned activities.

Evidence based-learning is the way out. This means that GWI would have to use some communities as pilots to initiate IWRM interventions in the basin through participatory learning and not just advocacy. Advocacy is good but on its own cannot achieve the intended objectives.

\(^5\) DATA FROM GIDA, UPPER WEST REGION
For instance what advocacy can one do in a community that has unreliable and very low rainfall without a reservoir, dugout or a borehole to improve upon their livelihoods and alleviate their poverty? Talks alone would not materialise, the talks must be followed with actions on the ground. That is the only way the commitment of the community (grassroot stakeholders) can be gained. This could be out-scaled when they are successful.

8.2.2 Action plan
IWRM plans without action plan is less useful. GWI and its partners would have to set up a basin platform to review plans drawn or to be drawn and provide concrete activities (action plans) towards implementing those IWRM plans.

8.2.3 Road Map and Roles of Key stakeholders
For effective and decentralized IWRM, it would be important to anchor the IWRM platform to national institutions and most especially the district assemblies for the regulation and monitoring of activities. The platform should be well structured and represented with key stakeholders selected at a workshop with all stakeholders present so they themselves could choose institutions to be represented on the platform. Criteria for selection should be discussed at the workshop so as to sustain the platform including financing arrangement. How early the platform could be established depends on the firm commitment of partners including WRC. Thus liaising with WRC in the setting up of this platform is vital to ensure continuity and sustainability, leading to the eventual establishment of the Black Volta Basin management Board. An organogram for the platform has not been produced because the consultant considers this to be a bottom-up approach instead of a top-down approach. There should be a decision making capacity for the people at the grassroot for the setting up of this platform. This is the only way people would identify with the process towards ownership and therefore give full commitment and be self-motivating.

Interaction with community members is important but the issue as to which communities to engage with is a key step which needs to be addressed. A buffer of 3km to the left bank (Ghana Side) of the main Black Volta river in Ghana (shown in Figure 46) already gives up a lot of communities requiring consultations/collaborations on transboundary issues. This is an opportunity but could also be a threat with regards to mobilisation of resources.
Figure 46: Communities in the Black Volta basin in Ghana with a 3km buffer from the left bank of the Black Volta River
8.2.4 Communication Strategy and Products that can promote IWRM in the basin

Most often IWRM awareness is created without any baseline study. It is important for GWI to conduct a baseline study to enable it measure the impact of its activities.

Communication of IWRM Plans, activities, strategies and results could be done in a number of ways. Most notable among these are the use of radio and TV programs in local dialects, Newsletters, brochures, National and Private Newspapers, Symposiums, Quizzes, use of sign boards (attractive advertisements/education) among others.

At the local communities, Video-vans can be sent occasionally to show documentaries that will educate and motivate the inhabitants to continue with their IWRM activities.

District water quality indices could be published quarterly to motivate the district assemblies to carry on with their IWRM activities. Rewards or awards could also be given to the best districts and individuals and advertised to motivate others to do likewise. T’shirts and Cups/hats could be printed with Key IWRM messages on them and given to people as souvenirs.

Giving regular talks on IWRM issues in Primary, Secondary and Tertiary education institutions could also be another avenue to educate people on IWRM issues. These schools visited could be given the souvenirs mentioned above to take home which might generate discussions of these subjects at the homes of these students.

8.2.5 Vision of IWRM in the basin

Interactions with key stakeholders in the basin suggested their vision for the basin to be the following:

- Harmonized buffer zone policy
- Healthy river water
- Groundwater for irrigation
- All water bodies fully utilized
- Green Environment
- Water Security
- Properly managed waste water systems
- Rivers protected from siltation

Stakeholders at the validation workshop then together came up with a vision for the UWRWAS as “Sustainable Use of Resources for Food Security and Economic Growth by All for All by 2025” with a mission to “ensure food security and economic growth through the development and effective utilisation of resources in the Black Volta Basin in an equitable and sustainable manner for the present and future generations”.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The following conclusions have been drawn from the study:

- The Black Volta Basin in Ghana is delineated into five (5) sub-catchments with three Water Audit Sections to facilitate its management.

- The water resources of the Black Volta have been assessed. Almost all populations depend on groundwater for their domestic water requirements. The water available in the basin could meet the water demands of the various uses by 2030 except for Bui hydropower which would benefit largely on flows from outside Ghana.

- A number of small reservoirs and dugouts in the Upper West Region are not being used productively owing to its silted condition thereby reducing their storage capacities. Due to the poor construction of some dugouts/reservoirs, the water stored dries up when the water is needed most. Moreover, management of the water facilities is still a challenge.

- There is high potential to increase the cropping areas within the basin in Ghana owing to the suitability of land. Sustainable farming practices are however required to forestall biodiversity in the basin, and therefore the protection of reserved areas.

- There is no platform for IWRM in the basin. Activities of water related technical institutions and/or high-level stakeholders are very much uncoordinated. There is a need for basin framework on IWRM and coordination to ensure coherence.

- The value chain approach with associated platforms is hardly used in the basin in Ghana with the exception of the seedlings platform being managed by MOFA and SARI under the auspices of UNDP in Wa. This could provide opportunities for all stakeholders to meet and discuss ways of solving existing problems efficiently and effectively.

- The use of TV and Radio programs with phone-in sections in local dialects and English, Newspapers, brochures, sign boards, souvenirs, public lectures, talks, symposia, and publishing of Water Quality Index (WQI) of districts quarterly, in the media with awards are some of the most promising communication strategies identified.
9.2 **Recommendations**

- Integrated watershed management with trans-boundary orientation is key in the basin and should be pursued with neighboring countries.

- Advocacy on agriculture especially irrigation is good but has to be done together with evidence based learning with some infrastructure and demonstrations to enhance the likelihood of adoption.

- Farmers should be productive, improve their yields and also be able to feed their livestock by growing a mixture of cereals and legumes including groundnut and vegetables in the dry season. The residues from these crops can be used to feed animals as supplementary feeds.

- GWI has started a platform for pastoralists and should continue to facilitate innovative ways to address issues with cattle herdsmen in the basin within Ghana taking into account international water laws and existing international relations and treaties between riparian countries.

- Platforms for IWRM must be established at the basin level through consultative process. The composition shall be determined by the stakeholders in close collaboration with the Water Resources Commission. The entire process of setting up the IWRM platform should be monitored, evaluated and documented.

- In the future, it is imperative to establish formal collaborative arrangements with state institutions such that the project would operate with the scope of the national orientation, ensuring feedbacks of lessons learned, towards influence and policy change while ensuring sustainability.

- Since the report on fisheries in the Black Volta Basin commissioned by the Bui Power Authority was not available at the time of finalising this study, it is proposed that the next study should look at fisheries in the Black Volta River in detail.
Bibliography

Ghana IWRM Plan (2012). Draft Report

GLOWA Volta Basin Tool Kit

GSS (2012). 2010 Population and Housing Census

Soil Research Institute Soil Attribute Data (Undated).

APPENDICES
Annex 1 – TOR

TERMS OF REFERENCE

STUDY OF THE HYDROLOGICAL STATE OF THE BLACK VOLTA BASIN IN GHANA

I. Introduction
The Global Water Initiative (GWI) is a worldwide program that is financed by the Howard G. Buffet Foundation. The long term goal of GWI is to generate lessons from Integrated Water Resources Management processes that inform policy change in the water sector, establishing platforms and frameworks that promote advocacy towards good governance of water resources. The program is implemented in thirteen (13) countries which are located in Central America, Eastern and Western Africa.

Initiated in 2007 and until 2012, GWI was implemented in five (5) West African States notably Burkina Faso, Ghana, Mali, Niger and Senegal. Presently, the programme is operating in the West African countries other than Senegal. In Ghana, the program is implemented by a consortium of CARE International, Catholic Relief Services (CRS) and the Regional Office for Central and West Africa of the International Union for Conservation of Nature (IUCN-PACO), based in Ouagadougou, Burkina Faso. The project Office is based in Wa in the Upper West Region of Ghana, and has engaged thirty-two (32) communities in the Nadowli and Lawra Districts.

The initiative has as its aim to support vulnerable groups and communities in arid and semi-arid regions with potable water supply and sanitation services delivery while ensuring equitable and sustainable management of water resources in an integrated manner. Nearly five years into the implementation of the initiative, the new orientation in the coming years is Water for Agriculture Initiative (WAI), following a meeting of the strategic committee of the initiative. This direction is intended to address water for sustainable agriculture development and increased food security.

Recognizing that a river basin is the unit for planning, it is necessary to increase our knowledge and understanding of the Black Volta basin in terms of the hydrology and water resource characteristics. Undoubtedly, the effective application of Integrated Water Resources Management (IWRM) concepts hinges on good knowledge of the basin in order to inform and

ensure sustainable mechanisms and processes that enhance feedbacks, building into national strategic frameworks.

With about 22% of primary stakeholders actively and effectively participating in IWRM interventions in the field60, and with the responsibility to facilitate dialogue and advocate for practical approaches to IWRM implementation at higher level institutions of state, this study intends to chart a path of linking «local actions» to the national orientation, providing options for the sustainable management of the Black Volta Basin resources.

II. Objective of the study
II.1 General objective
The study aims to guide the future interventions of GWI in Ghana, characterise water resources (both current and future) of the Black Volta Basin, ascertain the reservoir storage, distribution and productive uses while highlighting sustainable operational mechanisms including constraints that govern water resources.

II.2 Specific objective
The study seeks to provide guidance to IUCN-PACO, and the consortium in general, to have a clear view of IWRM implementation in the Black Volta Basin while addressing specific objectives targeted at the following:
To assess the hydrological situation of the Black Volta basin, delineation and its extent and limits, the interaction with other hydrologic systems, and the trans-boundary zone with Burkina Faso;
To understand the stakes of water resources, the potential of surface water and groundwater systems, uses, and stakeholders (whose activities impact directly or indirectly), management constraints as regards exploitation and suitability;
To assess the state of dug-outs, dams, wells, and characterize the agricultural / irrigation water use (current and future) on one hand, and the cultivated areas around these water bodies: surface, types of crop, seasonal (or not) use of water, on the other hand;
To examine the ecosystem approach into river basin planning and management of the Black Volta.

III. scope of the assignment
The scope of the assignment shall include but not limited to the following;
Delimit the Black Volta basin and delineate the sub-catchments/basins while taking into account the demographic and political administrative settings;
Take inventory of, and state of water systems including reservoirs/dams, dug-outs and wells in terms of quantity of water available for exploitation, and if possible, surface water–groundwater interactions;
Assess the agricultural/irrigation land use around the water systems noted in point 2 above in each sub-catchments including the crops grown and cropping pattern;
Assess water use including irrigation agriculture and projected developments in the basin, assessing their impacts/threats on the water resource and land, and emphasizing the users whose activities impact directly or indirectly on the resources of the basin;

60 DRAFT REPORT OF GWI WEST AFRICA CLUSTER MONITORING AND EVALUATION BASELINE STUDY, 2010.
Examine the current state of water governance in the basin, prospects including trans-boundary mechanisms, and the processes that foster integration of GWI interventions into national IWRM strategic frameworks;

Make proposals that enhance better management of the water and other natural resources of the Black Volta Basin;

Formulate a clear vision for the sustainable development of the Black Volta Basin and clarify the intermediate results as they relate to the root causes of the problems identified by the study.

Establish the possible implications of the Bui dam project on the basin and its inhabitants.

Make proposals for communicating strategy/products of IWRM that highlight water education among primary stakeholders while informing secondary actors across scales of the hydrologic characteristics of the Black Volta;

Present the results of the study at a validation workshop to be organised by IUCN in collaboration with CRS and CARE International.

IV. product
The study is expected to produce a comprehensive report that highlights the options for improved food security in an integrated fashion, analyzing the strengths, weaknesses, opportunities and threats in linking GWI interventions to the overall national frameworks for Integrated Water Resources Management.

V. duration of work
The study is planned to commence in April, 2012 after a contract agreement is signed with the successful consultant. The consultant shall, based on the scope of work, make realistic implementation schedule and outline activities/tasks in a proposal including field work (stakeholder consultations) and writing of the study report. The details of the implementation schedule proposed by the consultant will be discussed and agreed upon by the parties involved.

VI. human and material resources
The assignment shall be carried out by a consultant recruited by IUCN in collaboration with CRS and CARE International. IUCN and partners in implementing GWI in Ghana shall provide technical backstopping to the consultant, making available staff in order to facilitate his/her field engagements and consultation processes.

In addition, a vehicle shall be made available to the consultant to facilitate collection of data in the field.

VII. profile and selection of the consultant
The consultant will need to have the expertise of hydrology and water resources, and familiar with national frameworks on Integrated Water Resources Management. He/she must demonstrate experience in similar studies.

The consultant shall submit a proposal of his offer to IUCN-PACO detailing the work to be carried out no later than 12th April, 2012. Upon evaluation of the bids, the successful candidate shall be consulted to agree on the terms of contract before he/she is engaged to conduct the assignment.
VIII. reporting
The consultant will be requested to present first findings at a workshop planned for the end of the first week of May 2012 in Accra. The consultant shall, after 10 days of the last day of field work, submit a draft report of the study to IUCN-PACO. Then IUCN-PACO will have to react within five (5) working days beginning on the day of reception and acknowledgment of receipt. Following submission of the comments/observation from IUCN and her partners, the consultant shall submit a final report within five (5) working days integrating the comments of the client. The final report shall be presented as follows:
three printed copies, with all appendices included;
CD Rom containing an electronic version and the appendices.

List of stakeholders/partners of GWI
Traditional Authorities
Lawra Naa
Nandom Naa
Nanvilli Naa
Charikpomg Naa

Some Transboundary Communities
Bagre Zongo
Zupiiri
Methow-Yipaal

Some state institutions
Water Resources Commission (WRC)
Water Research Institute(WRI)
International Water Management Institute(IWMI)
Community Water and Sanitation Agency, Wa
Lawra district Assembly – District Planner and Coordinating Director
Nadowli district Assembly – District Planner and Coordinating Director
MoFA in Wa, Nadowli & Lawra
Environmental Protection Agency (EPA)
Forestry Services Division (FSD)
Ghana Irrigation Development Authority (GIDA)
Hydrological Services Department
Annex 2 – Population distribution by District/Province/Region in the Black Volta Basin

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Bougouriba</td>
<td>Diebougou</td>
<td>281910</td>
<td>6974</td>
<td>6974</td>
<td>100.0</td>
<td>40</td>
<td>281910</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Bouliemde</td>
<td>Koudougou</td>
<td>466104</td>
<td>2861</td>
<td>4602</td>
<td>62.2</td>
<td>101</td>
<td>289771</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Comoe</td>
<td>Banfora</td>
<td>319012</td>
<td>2893</td>
<td>18030</td>
<td>16.0</td>
<td>18</td>
<td>51187</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Houet</td>
<td>Bobo-Dioula</td>
<td>742403</td>
<td>15398</td>
<td>16355</td>
<td>94.1</td>
<td>45</td>
<td>698961</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Kenedougou</td>
<td>Orodara</td>
<td>178636</td>
<td>2602</td>
<td>8307</td>
<td>31.3</td>
<td>22</td>
<td>55954</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Kossi</td>
<td>Nouna</td>
<td>424929</td>
<td>12777</td>
<td>13320</td>
<td>95.9</td>
<td>32</td>
<td>407607</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Mouhoun</td>
<td>Dúdougou</td>
<td>368488</td>
<td>10751</td>
<td>10751</td>
<td>100.0</td>
<td>34</td>
<td>368488</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Oubritenga</td>
<td>Ziniare</td>
<td>388308</td>
<td>84</td>
<td>4494</td>
<td>1.9</td>
<td>86</td>
<td>7258</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Passore</td>
<td>Yako</td>
<td>285656</td>
<td>2050</td>
<td>4005</td>
<td>51.2</td>
<td>71</td>
<td>146216</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Poni</td>
<td>Gaoua</td>
<td>300524</td>
<td>8788</td>
<td>9841</td>
<td>89.3</td>
<td>31</td>
<td>268368</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province</td>
<td>Sanguie</td>
<td>Reo</td>
<td>277293</td>
<td>4972</td>
<td>4972</td>
<td>100.0</td>
<td>56</td>
<td>277293</td>
</tr>
</tbody>
</table>

\[\text{BASED ON UNEP POPULATION COUNT IN 2000}\]
<table>
<thead>
<tr>
<th>Country</th>
<th>Region/Department</th>
<th>District</th>
<th>Population</th>
<th>Houses</th>
<th>Population Density</th>
<th>Area (km²)</th>
<th>Urban (%)</th>
<th>Density (per km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Province Sissili</td>
<td>Leo</td>
<td>312570</td>
<td>5259</td>
<td>13518</td>
<td>38.9</td>
<td>23</td>
<td>121601</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province Sourou</td>
<td>Tougan</td>
<td>342164</td>
<td>9423</td>
<td>9701</td>
<td>97.1</td>
<td>35</td>
<td>332359</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Province Yatenga</td>
<td>Ouahigouya</td>
<td>684790</td>
<td>3410</td>
<td>12396</td>
<td>27.5</td>
<td>55</td>
<td>188378</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>Department Bondoukou</td>
<td></td>
<td>219263</td>
<td>4086</td>
<td>10538</td>
<td>38.8</td>
<td>21</td>
<td>85017</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>Department Bouna</td>
<td></td>
<td>178762</td>
<td>9018</td>
<td>21198</td>
<td>42.5</td>
<td>8</td>
<td>71412</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Berekum</td>
<td>Berekum</td>
<td>78310</td>
<td>451</td>
<td>955</td>
<td>47.2</td>
<td>82</td>
<td>36982</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Bole</td>
<td>Bole</td>
<td>85904</td>
<td>5006</td>
<td>9664</td>
<td>51.8</td>
<td>9</td>
<td>44499</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Jaman</td>
<td>Droga</td>
<td>87042</td>
<td>882</td>
<td>1378</td>
<td>64.0</td>
<td>63</td>
<td>55712</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Jirapa</td>
<td>Lambusse</td>
<td>82852</td>
<td>1865</td>
<td>2090</td>
<td>89.2</td>
<td>40</td>
<td>73933</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Kintampo</td>
<td>Kintampo</td>
<td>75749</td>
<td>41</td>
<td>6623</td>
<td>0.6</td>
<td>11</td>
<td>469</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Lawra</td>
<td>Lawra</td>
<td>72864</td>
<td>546</td>
<td>546</td>
<td>100.0</td>
<td>133</td>
<td>72864</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Nadowli</td>
<td>Nadawli</td>
<td>88335</td>
<td>1317</td>
<td>2605</td>
<td>50.6</td>
<td>34</td>
<td>44659</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Sissala</td>
<td>Tumu</td>
<td>59802</td>
<td>259</td>
<td>7458</td>
<td>3.5</td>
<td>8</td>
<td>2077</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Sunyani</td>
<td>Sunyani</td>
<td>98500</td>
<td>693</td>
<td>1268</td>
<td>54.7</td>
<td>78</td>
<td>53833</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Techiman</td>
<td>Techiman</td>
<td>104720</td>
<td>430</td>
<td>1135</td>
<td>37.9</td>
<td>92</td>
<td>39674</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Wa</td>
<td>Wa</td>
<td>135308</td>
<td>2034</td>
<td>5886</td>
<td>34.6</td>
<td>23</td>
<td>46758</td>
</tr>
<tr>
<td>Ghana</td>
<td>District Wenchi</td>
<td>Wenchi</td>
<td>105115</td>
<td>4886</td>
<td>4991</td>
<td>97.9</td>
<td>21</td>
<td>102904</td>
</tr>
<tr>
<td>Mali</td>
<td>Region Mopti</td>
<td></td>
<td>1629923</td>
<td>9775</td>
<td>90787</td>
<td>10.8</td>
<td>18</td>
<td>175494</td>
</tr>
<tr>
<td>Mali</td>
<td>Region Segou</td>
<td></td>
<td>1682801</td>
<td>506</td>
<td>56523</td>
<td>0.9</td>
<td>30</td>
<td>15065</td>
</tr>
<tr>
<td>Mali</td>
<td>Region Sikasso</td>
<td></td>
<td>1682800</td>
<td>365</td>
<td>77341</td>
<td>0.5</td>
<td>22</td>
<td>7942</td>
</tr>
</tbody>
</table>
Annex 3 – Detailed Soil Description by CSIR – SRI

<table>
<thead>
<tr>
<th>Name</th>
<th>Unit</th>
<th>GEOLOGY</th>
<th>GROUP</th>
<th>General Description</th>
<th>Environment</th>
<th>Profile Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kagu</td>
<td>COMPOUND</td>
<td>SANDSTONE</td>
<td>Fluvisols</td>
<td>Fluvisols accommodate genetically young, azonal soils in alluvial deposits. The name</td>
<td>Alluvial plains, river fans, valleys and tidal marshes on all continents and in all climate zones; many Fluvisols under natural conditions are flooded periodically</td>
<td>Profiles with evidence of stratification; weak horizon differentiation but a distinct topsoil horizon may be present. Redoximorphic features are common, in particular in the lower part of the profile</td>
</tr>
<tr>
<td>Kagu</td>
<td>COMPOUND</td>
<td>SANDSTONE</td>
<td>Leptosols</td>
<td>Leptosols are very shallow soils over continuous rock and soils that are extremely gravelly and/or stony. Leptosols are azonal soils and particularly common in mountainous regions. Leptosols include the: Lithosols of the Soil Map of the World</td>
<td>Mostly land at high or medium altitude and with strongly dissected topography. Leptosols are found in all climate zones (many of them in hot or cold dry regions), in particular in strongly eroding areas.</td>
<td>Leptosols have continuous rock at or very close to the surface or are extremely gravelly. Leptosols in calcareous weathering material may have a mollic horizon</td>
</tr>
<tr>
<td>Kagu</td>
<td>COMPOUND SANDSTONE</td>
<td>Lixisols</td>
<td>Lixisols comprise soils that have a higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays</td>
<td>Regions with a tropical, subtropical or warm temperate climate with a pronounced dry season, notably on old erosion or deposition surfaces. Many Lixisols are surmised to be polygenetic soils with characteristics formed under a more humid climate</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Kagu</td>
<td>COMPOUND SANDSTONE</td>
<td>Vertisols</td>
<td>Vertisols are churning, heavy clay soils with a high proportion of swelling clays. These soils form deep wide cracks from the surface downward when they dry out, which happens in most years.</td>
<td>Depressions and level to undulating areas, mainly in tropical, subtropical, semi-arid to subhumid and humid climates with an alternation of distinct wet and dry seasons. The climax vegetation is savannah, natural grassland and/or woodland.</td>
<td>Alternate swelling and shrinking of expanding clays results in deep cracks in the dry season, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not common</td>
<td></td>
</tr>
</tbody>
</table>
Kolingu Compound Granite

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvisols</td>
<td>Accommodate genetically young, azonal soils in alluvial deposits. The name Fluvisols may be misleading in the sense that these soils are not confined only to river sediments (Latin fluvius, river); they also occur in lacustrine and marine deposits.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lixisols</td>
<td>Comprise soils that have a higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays.</td>
</tr>
<tr>
<td>Location</td>
<td>Soil Type</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Kolingu</td>
<td>COMPOUND</td>
</tr>
<tr>
<td></td>
<td>GRANITE</td>
</tr>
<tr>
<td></td>
<td>Vertisols</td>
</tr>
<tr>
<td>Kunkwa</td>
<td>SIMPLE</td>
</tr>
<tr>
<td></td>
<td>ALLUVIUM</td>
</tr>
<tr>
<td></td>
<td>Arenosols</td>
</tr>
<tr>
<td>Kunkwa</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Type</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Kunkwa</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>Kunkwa</td>
<td>SIMPLE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Kunkwa</td>
<td>SIMPLE</td>
</tr>
<tr>
<td>Pani-kupela</td>
<td>SIMPLE</td>
</tr>
</tbody>
</table>

In the dry zone, there is little or no soil development.

Arenosols in the perhumid tropics tend to develop thick albic eluviation horizons (with a spodic horizon below 200 m from the soil surface) whereas most Arenosols of the humid temperate zone

| 89 |
Fluvisols accommodate genetically young, azonal soils in alluvial deposits. The name Fluvisols may be misleading in the sense that these soils are not confined only to river sediments (Latin fluvius, river); they also occur in lacustrine and marine dep
Alluvial plains, river fans, valleys and tidal marshes on all continents and in all climate zones; many Fluvisols under natural conditions are flooded periodically.
Profiles with evidence of stratification; weak horizon differentiation but a distinct topsoil horizon may be present. Redoximorphic features are common, in particular in the lower part of the profile.
<table>
<thead>
<tr>
<th>Pani-kupela</th>
<th>SIMPLE</th>
<th>ALLUVIUM</th>
<th>Leptosols</th>
<th>Mostly land at high or medium altitude and with strongly dissected topography. Leptosols are found in all climate zones (many of them in hot or cold dry regions), in particular in strongly eroding areas. Leptosols have continuous rock at or very close to the surface or are extremely gravelly. Leptosols in calcareous weathering material may have a mollic horizon.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lixisols</td>
<td>Regions with a tropical, subtropical or warm temperate climate with a pronounced dry season, notably on old erosion or deposition surfaces. Many Lixisols are surmised to be polygenetic soils with characteristics formed under a more humid climate.</td>
</tr>
</tbody>
</table>

Leptosols are very shallow soils over continuous rock and soils that are extremely gravelly and/or stony. Leptosols are azonal soils and particularly common in mountainous regions. Lixisols comprise soils that have a higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays.
<table>
<thead>
<tr>
<th>Region</th>
<th>Type</th>
<th>Subtype</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pani-kupela</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Vertisols are churning, heavy clay soils with a high proportion of swelling clays. These soils form deep wide cracks from the surface downward when they dry out, which happens in most years.</td>
</tr>
<tr>
<td>Siare-dagare</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Arenosols comprise sandy soils, including both soils developed in residual sands after in situ weathering of usually quartz-rich sediments or rock, and soils developed in recently deposited sands such as dunes in deserts and beach lands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arenosols are undulating areas, mainly in tropical, subtropical, semi-arid to subhumid and humid climates with an alternation of distinct wet and dry seasons. The climax vegetation is savannah, natural grassland and/or woodland.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depressions and level to undulating areas, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not commonly seen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alternate swelling and shrinking of expanding clays in deep cracks in the dry season, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not commonly seen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>From arid to humid and perhumid, and from extremely cold to extremely hot; landforms vary from recent dunes, beach ridges and sandy plains to very old plateaus; the vegetation ranges from desert over scattered vegetation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In the dry zone, there is little or no soil development. Arenosols in the perhumid tropics tend to develop thick albic eluviation horizons (with a spodic horizon below 200 m from the soil surface) whereas most Arenosols of the humid temperate zone</td>
</tr>
<tr>
<td>Siare-dagare</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Fluvisols</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluvisols accommodate genetically young, azonal soils in alluvial deposits. The name Fluvisols may be misleading in the sense that these soils are not confined only to river sediments (Latin fluvius, river); they also occur in lacustrine and marine dep</td>
</tr>
<tr>
<td>Siaredagare</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Leptosols</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Leptosols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siaredagare</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Lixisols</td>
</tr>
<tr>
<td>Lixisols</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siare-dagare</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Vertisols</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sirru</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Fluvisols</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sirru</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Leptosols</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sirru</td>
<td>SIMPLE</td>
<td>ALLUVIUM</td>
<td>Lixisols</td>
</tr>
</tbody>
</table>

Leptosols are very shallow soils over continuous rock and soils that are extremely gravelly and/or stony. Leptosols are azonal soils and particularly common in mountainous regions. Leptosols include the: Lithosols of the Soil Map of the World (FAO-UNESCO). Leptosols have continuous rock at or very close to the surface or are extremely gravelly. Leptosols in calcareous weathering material may have a mollic horizon.

Lixisols comprise soils that have a higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays.

Regions with a tropical, subtropical or warm temperate climate with a pronounced dry season, notably on old erosion or deposition surfaces. Many Lixisols are surmised to be polygenetic soils with characteristics formed under a more humid climate.
Fluvisols accommodate genetically young, azonal soils in alluvial deposits. The name **Fluvisols** may be misleading in the sense that these soils are not confined only to river sediments (Latin fluvius, river); they also occur in lacustrine and marine dep

Profiles with evidence of stratification; weak horizon differentiation but a distinct topsoil horizon may be present. Redoximorphic features are common, in particular in the lower part of the profile.

<table>
<thead>
<tr>
<th>Tanina</th>
<th>COMPOND</th>
<th>GRANITE</th>
<th>Fluvisols</th>
<th>Alluvial plains, river fans, valleys and tidal marshes on all continents and in all climate zones; many Fluvisols under natural conditions are flooded periodically.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanina</td>
<td>COMPOND</td>
<td>GRANITE</td>
<td>Leptosols</td>
<td>Mostly land at high or medium altitude and with strongly dissected topography. Leptosols are found in all climate zones (many of them in hot or cold dry regions), in particular in strongly eroding areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leptosols</td>
<td>Leptosols have continuous rock at or very close to the surface or are extremely gravelly. Leptosols in calcareous weathering material may have a mollic horizon</td>
</tr>
</tbody>
</table>

Leptosols are very shallow soils over continuous rock and soils that are extremely gravelly and/or stony. Leptosols are azonal soils and particularly common in mountainous regions.
<table>
<thead>
<tr>
<th>Tanina</th>
<th>COMPOND</th>
<th>GRANITE</th>
<th>Lixisols</th>
<th>Regions with a tropical, subtropical or warm temperate climate with a pronounced dry season, notably on old erosion or deposition surfaces. Many Lixisols are surmised to be polygenetic soils with characteristics formed under a more humid climate</th>
<th>Nil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanina</td>
<td>COMPOND</td>
<td>GRANITE</td>
<td>Vertisols</td>
<td>Depressions and level to undulating areas, mainly in tropical, subtropical, semi-arid to subhumid and humid climates with an alternation of distinct wet and dry seasons. The climax vegetation is savannah, natural grassland and/or Alternate swelling and shrinking of expanding clays results in deep cracks in the dry season, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not common</td>
<td></td>
</tr>
</tbody>
</table>
Fluvisols accommodate genetically young, azonal soils in alluvial deposits. The name Fluvisols may be misleading in the sense that these soils are not confined only to river sediments (Latin fluvius, river); they also occur in lacustrine and marine deposits. Alluvial plains, river fans, valleys and tidal marshes on all continents and in all climate zones; many Fluvisols under natural conditions are flooded periodically. Profiles with evidence of stratification; weak horizon differentiation but a distinct topsoil horizon may be present. Redoximorphic features are common, in particular in the lower part of the profile.
<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wenchi-hilun</td>
<td>SIMPLE</td>
<td>GRANITE Leptosols are very shallow soils over continuous rock and soils that are extremely gravelly and/or stony. Leptosols are azonal soils and particularly common in mountainous regions.</td>
<td>Mostly land at high or medium altitude and with strongly dissected topography. Leptosols are found in all climate zones (many of them in hot or cold dry regions), in particular in strongly eroding areas.</td>
</tr>
<tr>
<td>Wenchi-hilun</td>
<td>SIMPLE</td>
<td>GRANITE Lixisols comprise soils that have a higher clay content in the subsoil than in the topsoil as a result of pedogenetic processes (especially clay migration) leading to an argic subsoil horizon. Lixisols have a high base saturation and low-activity clays.</td>
<td>Regions with a tropical, subtropical or warm temperate climate with a pronounced dry season, notably on old erosion or deposition surfaces. Many Lixisols are surmised to be polygenetic soils with characteristics formed under a more humid climate.</td>
</tr>
</tbody>
</table>
Vertisols are churning, heavy clay soils with a high proportion of swelling clays. These soils form deep wide cracks from the surface downward when they dry out, which happens in most years. Depressions and level to undulating areas, mainly in tropical, subtropical, semi-arid to subhumid and humid climates with an alternation of distinct wet and dry seasons. The climax vegetation is savannah, natural grassland and/or woodland. Alternate swelling and shrinking of expanding clays results in deep cracks in the dry season, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not commonly

| Wenchi-hilun | SIMPLE | GRANITE | Vertisols | Depressions and level to undulating areas, mainly in tropical, subtropical, semi-arid to subhumid and humid climates with an alternation of distinct wet and dry seasons. The climax vegetation is savannah, natural grassland and/or woodland. | Alternate swelling and shrinking of expanding clays results in deep cracks in the dry season, and formation of slickensides and wedge-shaped structural elements in the subsurface soil. Gilgai microrelief is peculiar to Vertisols although not commonly |